

The Art and Craft of Computer
Programming

Mark McIlroy

www.markmcilroy.com

(c) Mark McIlroy 2003. All rights reserved

ISBN-13 978-1977647894

http://www.markmcilroy.com/

2

Originally titled ‘The Black Art of Programming’

Other books by the author

Introduction to the Stockmarket

A guide to writing Excel formulas and VBA macros

SQL Essentials

To download copies of these books please refer to the

author’s personal website below.

www.markmcilroy.com

http://www.markmcilroy.com/

3

Contents

1. Prelude 5

2. Program Structure 6

2.1. Procedural Languages 6

2.2. Declarative Languages 17

2.3. Other Languages 20

3. Topics from Computer Science 21

3.1. Execution Platforms 21

3.2. Code Execution Models 26

3.3. Data structures 29

3.4. Algorithms 44

3.5. Techniques 66

3.6. Code Models 85

3.7. Data Storage 100

3.8. Numeric Calculations 116

3.9. System Security 132

3.10. Speed & Efficiency 136

4. The Craft of Programming 157

4.1. Programming Languages 157

4.2. Development Environments 167

4

4.3. System Design 170

4.4. Software Component Models 180

4.5. System Interfaces 184

4.6. System Development 191

4.7. System evolution 210

4.8. Code Design 217

4.9. Coding 233

4.10. Testing 262

4.11. Debugging 275

4.12. Documentation 285

5. Appendix A - Summary of operators 286

5

1. Prelude

A computer program is a set of statements that is used to

create an output, such as a screen display, a printed

report, a set of data records, or a calculated set of

numbers.

Most programs involve statements that are executed in

sequence.

A program is written using the statements of a

programming language.

Individual statements perform simple operations such as

printing an item of text, calculating a single value, and

comparing values to determine which set of statements to

execute.

Simple instructions are performed in hardware by the

computer’s central processing unit.

Complex instructions are written in programming

languages and translated into the internal instruction set

by another program.

Computer memory is generally composed of bytes,

which are data items that contain a binary number. These

values can range from 0 to 255.

Memory locations are referred to by number, known as

an address.

A memory location can be used to record information

such as a small number, data from a graphics image, part

of a memory address, a program instruction, and a

numeric value representing a single letter.

6

Program instructions and data are stored in memory

while a program is executing.

2. Program Structure

2.1. Procedural Languages

Programs written in procedural languages involve a set

of statements that are performed in sequence. Most

programs are written using procedural languages.

Third generation languages are languages that operate at

the level of individual data items, “if” statements, loops

and subroutines.

A large proportion of programs are written using third-

generation languages.

2.1.1. Data

2.1.1.1. Data Types

Basic data types include numeric values and strings.

A string is a short text item, and may contain information

such as a name or a report heading.

Numeric data may be stored internally as a binary

number, which is a distinct format from a set of

individual digits stored in a text format.

7

Several numeric data types may be available. These may

include integer data types, floating point data types and

other formats.

Integers are whole numbers and integer data types cannot

record fractional numbers. However, operations with

integer data types are generally faster than operations

with other numeric data types.

Floating point data types store the digits within a number

separately from the magnitude, and can store widely

varying values such as 2430000000 and 0.0000002342.

Some languages also support a range of other numeric

data types with varying range and precision.

Dates are supported as a separate date type in some

languages.

A Boolean data type is a type that records only two

values, “true” and “false”. Boolean data types and

expressions are used in checking conditions and

performing different actions in different circumstances.

The language Cobol is used in data processing. Data

items within cobol are effectively fields within database

records, and may contain a combination of text and

numeric digits.

Individual positions within a data field in cobol can be

defined as holding an alphabetic, alphanumeric or

numeric character. Calculations can be performed with

numeric fields.

2.1.1.2. Type Conversion

Languages generally provide facilities for converting

between data types, such as between two different

numeric data types, or between numeric data in binary

format and a text string of digits.

8

This may be done automatically within expressions,

through the use of an operator symbol, or through a

subroutine call.

When different numeric data types are mixed within an

expression, the value with the lower level of precision is

generally promoted to the higher level of precision

before the calculation is performed.

The details of type promotion vary with each language.

2.1.1.3. Variables

A variable is a data item used within a program, and

identified by a variable name.

Variables may consist of fundamental data types such as

strings and numeric data types, or a variable name may

refer to multiple individual data items.

Variables can be used in expressions for calculations,

and also for comparisons to perform different sections of

code under different conditions.

The value of a variable can be changed using an

assignment statement, which changes the value of a

variable to equal the value of an expression.

2.1.1.4. Constants

Constants such as fixed numbers and strings can be

included directly within program code.

Constants can also be given a name, similar to a variable

name, and used in several places with the program.

9

The value of a constant is fixed and cannot be changed

without recompiling the program.

2.1.1.5. Data Structures

Variables can be defined as a collection of individual

data items.

An array is a variable that contains multiple data items of

the same type. Each item is referred to by number.

A structure type, also known as a record, is a collection

of several different data items.

An object is an element of object orientated programs.

An object is referred to by name and contains individual

data items. Subroutines known as methods are also

defined within an object.

Arrays can contain structures, and structures can contain

arrays and other structures.

Some languages support other data structures such as

lists.

2.1.1.6. Pointers & References

A pointer is a variable that contains a reference to

another variable. The second variable can be accessed

indirectly by referring to the pointer variable.

Pointers are used to link data items together, when data

structures are dynamically created as a program

executes.

In some languages, pointers can be increased and

decreases to scan through memory and access different

10

elements within an array, or individual bytes within a

block of data.

A reference to a variable is also known as an address,

and refers to the location of the variable in memory.

The value of a pointer variable can be set to the address

of another data item by using a reference operator with

the data item.

The data item that a pointer points to can be accessed by

using a de-referencing operator.

2.1.1.7. Variable Scope

Individual variables can only be accessed within certain

sections of a program.

Global variables can be accessed from any point within

the code.

Local variables apply within a single subroutine. An

independent copy of the local variables is created each

time that a subroutine is called.

Where a local variable has the same name as a global

variable, the name would refer to the variable with the

tightest scope, which in that case would be the local

variable.

Parameters are data values or variables that are passed to

a subroutine when it is called. Parameters can be

accessed from within the subroutine.

Some languages have multiple levels of scope. In these

cases, subroutines may be defined within other

subroutines, and variables may be defined within inner

code blocks.

11

Variables within the current level of scope and outer

levels of scope can be accessed, but not variables within

an inner level of scope or in an independent part of the

system.

Modules and objects may have public and private

subroutines and variables. Public variables are accessible

outside the module, while private variables are only

accessible within the module.

The use of global variables can lead to interactions

between different parts of the code, which may make

debugging and modifying the code more difficult.

2.1.1.8. Variable Lifetime

Global variables exist for the period of time that the

program is running.

Local variables are created when a subroutine is called,

and expire when the subroutine terminates.

Static variables may have a scope that applies within a

single subroutine, however they have a lifetime that

exists for the full period that the program is executing,

and they retain their value from one call to the subroutine

to the next.

Dynamically created data items exist until they are freed.

Dynamic memory allocation involves creating data items

while a program is running.

This may be done explicitly, or it may occur

automatically when the last remaining variable that

points to the item is assigned a different value, or expires

as its level of scope terminates.

12

2.1.2. Execution

2.1.2.1. Expressions

An expression is a combination of constants, variables

and operators that is used to calculate a value.

An assignment operation involves a variable name and

an expression. The expression is evaluated, and the value

of the variable is changed to equal the result of the

expression.

Expressions are also used within control flow statements

such as “if” statements and loops.

Numeric expressions include the standard arithmetic

operations of addition, subtraction, multiplication and

division and exponentiation.

The basic string operations are concatenating two strings

to form a single string, extracting a substring, and

comparing strings.

String expressions may include constant strings, string

variables, and operators such as a concatenation operator.

Boolean variables and expressions have only two

possible values, “true” and “false”.

An expression containing a relational operator, such as

“<=”, is a Boolean expression. For example, “5 < 3” has

the value “false”.

The Boolean operators “and”, “or” and “not” can also be

used in expressions. An “and” expression has the value

“true” when both parts are true, an “or” expression has

the value “true” when either value is true, and a “not”

expression reverses the value.

Boolean expressions are used within “if” statements to

execute code under certain conditions and within loops

13

to repeat a series of statements while a condition remains

true.

2.1.2.2. Statements

2.1.2.2.1. Assignment Statements

An assignment statement contains a variable name, an

assignment symbol such as an “=” sign, and an

expression.

The expression is evaluated, and the value of the variable

is set to equal the result of the expression.

Some languages are expression-focused rather than

statement-focused. In these languages, an assignment

operation may itself be an expression, and may be used

within other expressions.

2.1.2.2.2. Control Flow

2.1.2.2.2.1. If Statements

An “if” statement contains a Boolean expression and an

associated block of code. The expression is evaluated,

and if the result is true then the statements within the

block are executed, otherwise they are skipped.

An “if” statement may also have a block of code attached

to an “else” section. If the expression is false, then the

code within the “else” section is executed, otherwise it is

skipped.

2.1.2.2.2.2. Loops

A loop statement may contain a Boolean expression. The

expression is evaluated, and if it is true then the code

14

within the block is executed. The control flow then

returns to the beginning of the loop, and the cycle repeats

the loop each time that the condition evaluates to true.

Other loop statements may also be available, such as

statements that specify a fixed number of iterations, or

statements that loop through all items in a language data

structure.

2.1.2.2.2.3. Goto

Some languages support a “goto” statement. A goto

statement causes a jump to a different point in the

program to continue execution.

Code that uses goto statements can develop very

complex control flow and may be difficult to debug and

modify.

Some languages also support structured goto operations,

such as a statement that terminates the current loop mid-

way through the loop code.

These operations do not complicate the control flow to

the same extent as general goto statements, however

these operations can be easily missed when code is being

read.

For example, a statement in an early part of a complex

loop may result in the loop being exited when it is

executed. This statement complicates the control flow

and may make interpreting the loop code more difficult.

2.1.2.2.2.4. Exceptions

In some languages, exception handling subroutines and

sections of code can be defined.

15

These code sections are automatically executed when an

error occurs.

2.1.2.2.2.5. Subroutine Calls

Including the name of a subroutine within a statement

causes the subroutine to be called. The subroutine name

may be part of an expression, or it may be an individual

statement.

When the subroutine is called, program execution jumps

to the beginning of the subroutine and execution

continues at that point. When the code in the subroutine

has been executed, or a termination statement is

performed, the subroutine terminates and execution

returns to the next statement following the original

subroutine call.

2.1.2.3. Subroutines

Subroutines are independent blocks of code that are

referred to by name.

Programs are composed of a collection of subroutines.

When execution reaches a subroutine call the program

execution jumps to the beginning of the subroutine.

Control flow returns to the point following the

subroutine call when the subroutine terminates.

Subroutines may include parameters. These are variables

that can be accessed within the subroutine. The value of

the parameters is set by the calling code when the

subroutine call is performed.

Calling code can pass constant data values or variables as

the parameters to a subroutine call.

16

Parameters are passed in various ways. “Call-by-value”

passes the value of the data to the subroutine. “Call-by-

reference” passes a reference to the variable in the

calling routine, and the subroutine can alter the value of a

parameter variable within the calling routine.

Call by value leads to fewer unexpected effects in the

calling routine, however returning more than one value

from a subroutine may be difficult.

Subroutines may also contain local variables. These

variables are accessible only within the subroutine, and

are created each time that the subroutine is called.

In some languages, subroutines can also call themselves.

This is known as recursion and does not erase the

previous call to the subroutine. A new set of local

variables is created, and further calls can be made.

This process is used for functions that involve branching

to several points at each stage in a process. As each

subroutine call terminates, execution returns to the

previous level.

2.1.2.4. Comments

Comments are included within program code for the

benefit of a human reader. Comments are identified as

separate text items, and are ignored when the program is

compiled.

Comments are used to include additional information

within the code that is relevant to a particular calculation

or process, and to describe details of the function within

a complex section of code.

17

2.2. Declarative Languages

A declarative program defines structures and patterns,

and may contain a set of information and facts.

In contrast, procedural code specifies a set of operations

that are executed in sequence.

Declarative code is not executed directly, but is used as

input to other processes.

For example, a declarative program may define a set of

patterns, which is used by a parser to identify patterns

and sub-patterns within a set of input data.

Other declarative systems use a set of facts to solve a

problem that is presented.

Declarative languages are also used to define sets of

items, such as records within data queries.

Declarative programs are very powerful in the operations

that can be performed, in comparison to the size and

complexity of the code.

For example, all possible programs can be compiled

using a definition of the language grammar.

Also, a problem solving engine can solve all problems

that fall within the scope of the information that has been

provided.

Facts may include basic data, and may also specify that

two things are equivalent.

For example:

 x + y = z * 2

18

 Month30Days = April OR June OR September

OR November

 FieldName = 342-???-453

 expression: number “+” expression

The first example is a mathematical statement that two

expressions are equivalent, the second example specifies

that “Month30Days” is equal to a set of four months, the

third example matches the set of field names beginning

with 342 and ending with 453, and the fourth example

specifies a pattern in a language grammar.

Patterns may be recursively defined, such as specifying

that brackets within an expression may contain an entire

expression, with potentially infinite levels of sub-

expressions.

Declarative code may involve patterns, which have a

fixed structure, and sets, which are unordered collections

of items.

2.2.1. Code Structure

Declarative code may contain keywords, names,

constants, operators and statements.

Keywords are language keywords that may be used to

separate sections of the program and identify the type of

information that is recorded.

The names may identify patterns, while the operators

may be used to create a new pattern from other patterns.

Statements may be entered in the form of specifying that

two expressions are equivalent.

19

The chain of connections is defined by the appearance of

names within different statements. There is no order

within a statement or from one statement to the next.

20

2.3. Other Languages

Programming languages appear in a wide variety of

forms and structures.

In the language LISP, for example, all processing is

performed with lists, and a LISP program consists of

multiple brackets within brackets defining lists of data

and instructions

21

3. Topics from Computer Science

3.1. Execution Platforms

3.1.1. Hardware

Computer hardware executes a simple set of instructions

known as machine code.

Machine code includes instructions to move data

between memory locations, perform basic calculations

such as multiplication, and jump to different points in the

code depending on a condition.

Only machine code can be directly executed. Programs

written in programming languages are converted to a

machine code format before they are executed.

Machine code instructions and data are stored in memory

while a program is running.

3.1.2. Operating systems

An operating system is a program that manages the

operation of a computer. The operating system performs

a wide range of functions, including managing the screen

display and other user interface components,

implementing the disk file system, managing execution

of processes, and managing memory allocation and

hardware devices.

Generally programs a developed to run on a particular

operating system and significant changes may be

required to run on other operating systems. This may

include changing the way that screen processing is

handled, changing the memory management processes,

and changing file and database operations.

22

3.1.3. Compilers

A compiler is a program that generates an executable file

from a program source code file.

The executable file contains a machine code version of

the program that can be directly executed.

On some systems, the compiler produces object code

files. Object code is a machine code format however the

references to data locations and subroutines have not

been linked.

In these cases, a separate program known as a linker is

used to link the object modules together to form the

executable file.

Fully compiled code is generally the fastest way to

execute a program.

However, compilation is a complex process and can be

slow in some cases.

3.1.4. Interpreters

An interpreter executes a program directly from the

source code, rather than producing an executable file.

Interpreters may perform a partial compilation to an

intermediate code format, and execute the intermediate

code internally.

This approach is slower than using a fully compiled

program, and also the interpreter must be available to run

the program. The program cannot be run directly in a

stand-alone environment.

23

However, interpreters have a number of advantages.

An interpreter starts immediately, and may include

flexible debugging facilities. This may include viewing

the code, stepping through processes, and examining the

value of data variables. In some cases the code can be

modified when execution is halted part-way through a

program.

3.1.5. Virtual Machines

A virtual machine provides a run-time environment for

program execution. The virtual machine executes a form

of intermediate code, and also provides a standard set of

functions and subroutine calls to supply the infrastructure

needed for a program to access a user interface and

general operating system functions.

Virtual machines are used to provide portability across

different operating platforms, and also for security

purposes to prevent programs from accessing devices

such as disk storage.

An extension to a virtual machine is a just-in-time

compiler, which compiles each section of code as it

begins executing.

3.1.6. Intermediate Code Execution

A run-time execution routine can be used to execute

intermediate code that has been generated by compiling

source code.

Programs may be written using a language developed

specifically for an application, such as formula

evaluation system or a macro language.

24

The system may contain a parser, code generator and

run-time execution routine.

Alternatively, the code generation could be done

separately, and the intermediate code could be included

as data with the application.

3.1.7. Linking

In some environments, subroutine libraries can be linked

into a program statically or dynamically.

A statically linked library is linked into the executable

file when it is created. The code for the subroutines that

are called from the program are included within the

executable file.

This ensures that all the code is present, and that the

correct version of the code is being used.

However, executable files may become large with this

approach. Also, this prevents the system from using

updated libraries to correct bugs or improve

performance, without using a new executable file.

Static linking may only be available for some libraries

and may not be available for some functions such as

operating system calls.

Dynamic linking involves linking to the library when the

program is executing. This allows the program to use

facilities that are available within the environment, such

as operating system functions.

Dynamically linked libraries can be updated to correct

bugs and improve performance, without altering the

main executable file.

However, problems can arise with different versions of

libraries.

25

26

3.2. Code Execution Models

3.2.1. Single Execution Thread

Programs execution is generally based on the model of a

single thread of execution.

Execution begins with the first statement in the program

and continues through subroutine calls, loops and “if”

statements until the program finally terminates.

At any point in time, the current instruction position will

only apply to a single point within the code.

A system may include several major processes and

threads, but within each major block the single execution

thread model is maintained.

3.2.2. Time Slicing

In order to run multiple programs and processes using a

single central processing unit, many operating systems

implement a time slicing system.

This approach involves running each process for a very

short period of time, in rapid succession. This creates the

effect of several programs running simultaneously, even

though only a single machine code instruction is

executing at any point in time.

3.2.3. Processes and Threads

On many systems, multiple programs may be run

simultaneously, including more than one copy of a single

program.

27

An executing program is known as a process. Each

running program is an independent process and executes

concurrently with the other processes.

A program may also start independent processes for

major software components such as functional engines.

Some systems also support threads. A thread is an

independently executing section of code. Threads may

not be entire programs however they are generally larger

functional components than a single subroutine.

Threads are used for tasks such as background printing,

compacting data structures while a program is running

and so forth.

On systems that support multiple user terminals with a

central hardware system, users can start processes from a

terminal. Multiple processes may operate concurrently,

including multiple executing copies of a single program.

3.2.4. Parallel Programming

Languages have been developed to support parallel

programming.

Parallel programming is based on an execution model

that allows individual subroutines to execute in parallel.

These systems may be extremely difficult to debug.

Synchronisation code is required to prevent conflicts

when two subroutines attempt to update the same section

of data, and to ensure that one task does not commence

until related tasks have completed.

Parallel programming is rarely used. Total execution

time is not reduced by the parallel execution process, as

the total CPU time required to perform particular task is

unchanged.

28

3.2.5. Event Driven Code

Event driven code is an execution model that involves

sections of code being automatically triggered when a

particular event occurs.

For example, selecting a function in a graphical user

interface environment may lead to a related subroutine

being automatically called.

In some systems several events could occur in rapid

succession and several sections of code could run

concurrently.

This is not possible with a standard menu-driven system,

where a process must complete before a different process

can be run.

Event driven code supports a flexible execution

environment where code can be developed and executed

in independent sections.

3.2.6. Interrupt Driven Code

Interrupt driven code is used in hardware interfacing and

industrial control applications. In these cases, a hardware

signal causes a section of code to be triggered.

Interfacing with hardware devices is generally conducted

using interrupts or polling. Polling involves checking a

data register continually to check whether data is

available. An interrupt driven approach does not required

polling, as the interrupt handling routine is triggered

when an interrupt occurs.

29

3.3. Data structures

3.3.1. Aggregate data types

3.3.1.1. Arrays

3.3.1.1.1. Standard Arrays

Arrays are the fundamental data structure that is used

within third-generation languages for storing collections

of data.

An array contains multiple data items of the same type.

Each item is referred to by a number, known as the array

index.

Indexes are integer values and may start at 0, 1, or some

other value depending on the definition and the language.

Arrays can have multiple dimensions. For example, data

in a two-dimensional array would be indexed using two

independent numbers. A two dimensional array is similar

to a grid layout of data, with the row and column number

being used to refer to an individual data item.

Arrays can generally contain any data type, such as

strings, integers and structures.

Access to an array element may be extremely fast, and

may be only slightly slower than accessing an individual

data variable.

Arrays are also known as tables.

This particularly applies to an array of structures, which

may be similar to a table with rows of the same format

but different data in each column. A table also refers to

an array of data that is used for reference while a

program executes.

30

In some cases the index entry of the array may represent

an independent data value, and the array may be

accessed directly using a data item.

In other cases an array is simply used to store a list of

items, and the index value does not have any particular

significance.

In cases where the array is used to store a list of data, the

order of the items may or may not be significant,

depending on the type and use of the data.

The following diagram illustrates a two–dimensional

array.

3.3.1.1.2. Ragged Arrays

Standard arrays are square. In a two-dimensional case,

every row has the same number of columns, and every

column has the same number of rows.

A ragged array is an array structure where the individual

columns, or another dimension, may have varying sizes.

This could be implemented using a one-dimensional

array for one dimension and linked lists for each column.

Alternatively, a single large array could be used, and the

row and column positions could be calculated based on a

table of column lengths.

31

The following diagram illustrates a ragged array.

3.3.1.1.3. Sparse Arrays

A sparse array is a large array that contains many unused

elements.

This can occur when a data item is used as an index into

the array, so that items can be accessed directly, however

the data items contain gaps between individual values.

Where entire rows or columns are missing, this structure

could be implemented as a compacted array.

Alternatively, the index values could be combined into a

single text key, and the data items could be stored by key

using a structure such as a hash table or tree.

Another approach may involve using a standard array for

one dimension, and linked lists to stored the actual data

and so avoid the unused elements in the second

dimension.

A sparse array is shown below

32

3.3.1.1.4. Associative Arrays

An associative array is an array that uses a string value,

rather than an integer as the index value.

Associative arrays can be implemented using structures

such as trees or hash tables.

Associative arrays may be useful for ad-hoc programs, as

code can quickly and easily be written using an

associative array that would require scanning arrays and

other processing using standard code.

However, due to the use of strings and the searching

involved in locating elements, these structures would

have slower access times than other data structures.

3.3.1.2. Structures

A structure is a collection of individual data items.

Structures are also known as records in some languages.

A programming structure is similar in format to a

database record.

Arrays of structures are visually similar to a grid layout

of data with each row having the same type, but different

columns containing different data types.

 x

 x

 x

x

 x

x

 x x

x

x

x

33

3.3.1.3. Objects

In object orientated programming, a data structure

known as an object is used.

An object is a structure type, and contains a collection of

individual data items.

However, subroutines known as methods are also

defined with the object definition, and methods can be

executed by using the method name with a data variable

of that object type.

3.3.2. Linked Data Structures

Linked data structures consist of nodes containing data

and links.

A node can be implemented as a structure type. This may

contain individual data items, together with links that are

used to connect to other nodes.

Links can be implemented using pointers, with

dynamically created nodes, or nodes could be stored in

an array and array index values could be used as the

links.

Using dynamic memory allocation and pointers results in

simple code, and does not involve defining the size of the

structure in advance.

An array implementation may result in more complex

code, although it may be faster as allocating and

deallocating memory would not be required.

Unlike dynamic data allocation, the array entries are

active at all times. Entries that are not currently used

within the data structure may be linked together to form

34

a free list, which is used for allocation when a new node

is required.

3.3.2.1. Linked Lists

A linked list is a structure where each node contains a

link to the next node in the list.

Items can be added to lists and deleted from lists in a

single operation, regardless of the size of the list. Also,

when dynamic memory allocation is used the size of the

list is not fixed and can vary with the addition and

deletion of nodes.

However, elements in a linked list cannot be accessed at

random, and in general the list must be searched to locate

an individual item.

3.3.2.2. Doubly Linked Lists

A doubly linked list contains links to both the next node

and the previous node in the list.

This allows the list to be scanned in either direction.

Also, a node can be added to or deleted from a list be

referring to a single node. In a singly linked list, a pointer

to the previous node must be separately available in

order to perform a deletion.

35

3.3.2.3. Binary Trees

A binary tree is a structure in which a node contains a

link to a left node and a link to a right node.

This may form a tree structure that branches out at each

level.

Binary trees are used in a number of algorithms such as

parsing and sorting.

The number of levels in a full and balanced binary tree is

equal to log2(n+1) for “n” items.

3.3.2.4. Btrees

A B-tree is a tree structure that contains multiple

branches at each node.

A B-tree is more complex to implement than a binary

tree or other structures, however a B-tree is self

36

balancing when items are added to the tree or deleted

from the tree.

B-trees are used for implementing database indexes.

3.3.2.5. Self-Balancing Trees

A self-balancing tree is a tree that retains a balanced

structure when items are added and deleted, and remains

balanced regardless of the order of the input data.

3.3.3. Linear Data Structures

3.3.3.1. Stacks

A stack is a data structure that stores a series of items.

When items are removed from the stack, they are

retrieved in the opposite order to the order in which they

were placed on the stack.

This is also known as a LIFO, Last-In-First-Out

structure.

The fundamental operations with a stack are PUSH,

which places a new data item on the top of the stack, and

37

POP, which removes the item that is on the top of the

stack.

A stack can be implemented using an array, with a

variable recording the position of the top of the stack

within the array.

Stacks are used for evaluating expressions, storing

temporary data, storing local variables during subroutine

calls and in a number of different algorithms.

3.3.3.2. Queues

A queue is used to store a number of items.

Items that are removed from the queue appear in the

same order that they were placed into the queue.

A queue is also known as a FIFO, First-In-First-Out

structure.

Queues are used in transferring data between

independent processes, such as interfaces with hardware

devices and inter-process communication.

38

3.3.4. Compacted Data Structures

Memory usage can be reduced with data that is not

modified by placing the data in a separate table, and

replacing duplicated entries with a single entry.

3.3.4.1. Compacted Arrays

A compacted array can sometimes be used to reduce

storage requirements for a large array, particularly when

the data is stored as a read-only reference, such a state

transition table for a finite state automaton.

In the case of a two dimensional array, a additional one-

dimensional array would be created.

Entries such as blank and duplicated rows could be

removed from the main array, and the remaining data

compacted to remove the unused rows. This may involve

sorting the array rows so that adjacent identical rows

could be replaced with a single row.

The second array would then be used as an indirect index

into the main array. The original array indexes would be

used to index the new array, which would contain the

index into the compacted main array.

An indirectly addressed compacted array is shown below

3.3.4.2. String Tables

39

For example, where a set of strings is recorded in a data

structure, a separate string table can be created.

The string table would be an array containing the strings,

with one entry for each unique string. The main data

table would then contain an index into the string table.

3.3.5. Other Data Structures

3.3.5.1. Hash tables

A hash table is a data structure that is designed for

storing data that is accessed using a string value rather

than an integer index.

A hash table can be implemented using an array, or a

combination of an array and a linked structure.

Accessing an entry in a hash table is done using a hash

function. The hash function is a calculation that

generates a number index from the string key.

The hash function is chosen so that the indexes that are

generated will be evenly spread throughout the array,

even if the string keys are clustered into groups.

When the hash value is calculated from the input key, the

data item may be stored in the array element indexed by

the hash value. If the entry is already in use, another hash

value may be calculated or a search may be performed.

integer

while

if

40

Retrieving items from the hash table is done by

performing the same calculation on the input key to

determine the location of the data.

Accessing a hash table is slower than accessing an array,

as a calculation is involved. However, the hash function

has a fixed overhead and the access speed does not

reduce as the size of the table increases.

Access to a hash table can slow as the table becomes full.

Hash tables provide a relatively fast way to access data

by a string key. However, items in a hash table can only

be accessed individually, they cannot be retrieved in

sequence, and a hash table is more complex to

implement than alternative data structures such as trees.

3.3.5.2. Heap

A heap is an area of memory that contains memory

blocks of different sizes. These blocks may be linked

together using a linked list arrangement.

Heaps are used for dynamic memory allocation. This

may include memory allocation for strings, and memory

allocated when new data items are created as a program

runs.

Implementing a heap can be done using pointers and a

large block of memory. This requires accessing the

memory as a binary block, and creating links and spaces

within the block, rather than treating the memory space

as a program variable.

Unused blocks are linked together to form a free list,

which is used when new allocations are required.

41

3.3.5.3. Buffer

A buffer is an area of memory that is designed to be

treated as a block of binary data, rather than an

individual data variable.

Buffers are used to hold database records, store data

during a conversion process that involves accessing

individual bytes within the block, and as a transfer

location when transferring data to other processes or

hardware devices.

Buffers can be accessed using pointers. In some

languages, a buffer may be handled as an array definition

with the array containing small integer data types, with

the assumption that the memory block occupies a

contiguous section of memory.

3.3.5.4. Temporary Database

Although databases are generally used for the permanent

storage of data, in some cases it may be useful to use a

database as a data structure within a program.

Performance would be significantly slower than direct

memory accesses however the use of a database a

program element would have several advantages

A database has virtually unlimited size, either strings or

numeric variables can be used as an index value, random

42

accesses are rapid, large gaps between numeric index

values are automatically handled and no code needs to be

written to implement the system.

3.3.6. Language-Specific Structures

Some languages include data structures within the syntax

of the language, in addition to the commonly

implemented array and structure types.

In the language LISP, for example, all data is stored

within lists, and program code is written as instructions

contained within lists.

These lists are implemented directly within the syntax of

the language.

43

3.3.7. Data Structure Comparison

Structur

e

Access

Method

Random

Access

Time

Addition

&

Deletion

Time

Full

Scan

Memor

y

Usage

Array Direct

Index

1 1 Yes 1 item

 Search

(sorted)

Log2(n) –

1

n / 2

 Search

(unsorted)

n / 2 1

Linked

List

Search n / 2 1 Yes 1 item

+ 1

link

Binary

Tree

Search

(Fully

Balanced)

log2(n) – 1 log2(n) – 1

(addition)

Yes 1 item

+ 2

links

 Search

(Fully

Unbalance

d)

n / 2 n / 2

(addition)

Hash

Table

String 1 hash

function

1 hash

function

No 1 item

+

imple

mentat

ion

overhe

ad

44

3.4. Algorithms

An algorithm is a step by step method for calculating a

particular result or performing a process.

For example, the following steps define the sorting

algorithm known as a bubble sort.

1. Scan the list and select the smallest item.

2. Move the smallest item to the end of the new list.

3. Repeat steps 1 and 2 until all items have been

placed into the new list.

In many cases several different algorithms can be used to

perform a particular process. The algorithms may vary in

the complexity of implementation, the volume of data

used or generated, and the execution time needed to

complete the process.

3.4.1. Sorting

Sorting is a slow process that consumes a significant

proportion of all processing time.

Sorting is used when a report or display is produced in a

sorted order, and when a processing method or algorithm

involves the processing of data in a particular order.

Sorting is also used in data structures and databases to

store data in a format that allows individual items to be

located quickly.

A range of different sorting algorithms can be used to

sort data.

45

3.4.1.1. Bubble Sort

The bubble sort method involves reading the list and

selecting the smallest item. The list is then read a second

time to select the second smallest item, and so on until

the entire list is sorted.

This process is simple to implement and may be useful

when a list contains only a few items.

However, the bubble sort technique is inefficient and

involves an order of n2 comparisons to sort a list of “n”

items.

Sorting an array of one million data items would require

a trillion individual comparisons using the bubble sort

method.

When more than a few dozen items are involved,

alternative algorithms such as the quicksort method can

be used.

3.4.1.2. Quicksort

These algorithms involve using an order of n*log2(n)

comparisons to complete the sorting process. In the

previous example, this would be equal to approximately

20 million comparisons for the list of one million items.

The quicksort algorithm involves selecting an element at

random within the list. All the items that have a lower

value than the pivot element are moved to the beginning

of the list, while the items with a value that is greater

than the pivot element are moved to the end of the list.

This process is then applied separately to each of the two

parts of the list, and the process continues recursively

until the entire list is sorted.

46

subroutine qsort(start_item as integer, end_item as

integer)

 pivot_item as integer

 bottom_item as integer

 top_item as integer

 pivot_item = start_item + (Rnd * (end_item -

start_item))

 bottom_item = start_item

 top_item = end_item

 while bottom_item < top_item

 while data(bottom_item) < data(pivot_item)

 bottom_item = bottom_item + 1

 end

 if bottom_item < pivot_item

 tmp = data(bottom_item)

 data(bottom_item) = data(pivot_item)

 data(pivot_item) = tmp

 pivot_item = bottom_item

 end

 while data(top_item) > data(pivot_item)

 top_item = top_item - 1

 end

 if top_item > pivot_item

 tmp = data(top_item)

 data(top_item) = data(pivot_item)

 data(pivot_item) = tmp

 pivot_item = top_item

 end

 end

 if pivot_item > start_item + 1

 qsort start_item, pivot_item - 1

 end

 if pivot_item < end_item - 1

 qsort pivot_item + 1, end_item

 end

end

3.4.2. Binary Tree Sort

47

A binary tree sort involves inserting the list values into a

binary tree, and scanning the tree to produce the sorted

list.

Items are inserted by comparing the new item with the

current node. If the item is less than the current node,

then the left path is taken, otherwise the right path is

taken.

The comparison continues at each node until an end

point is reached where a sub-tree does not exist, and the

item is added to the tree at that point.

Scanning the tree can be done using a recursive

subroutine. This subroutine would call itself to process

the left sub tree, output the value in the current node, and

then call itself to process the right sub-tree.

A binary tree sort is simple to implement. When the

input values appear in a random order, this algorithm

produces a balanced tree and the sorting time is of the

order of n*log2(n).

However, when the input data is already sorted or is

close to sorted, the binary tree degenerates into a simple

linked list. In this case, the sorting time increases to an

order of n2.

subroutine insert_item

 if insert_value < current_value

 if left_node_exists

 next_node = left_node

 else

 insert item as new left node

 end

 else

 if right_node_exists

 next_node = right_node

 else

 insert item as new right node

 end

 end

end

48

subroutine tree_scan

 if left node exists

 call tree_scan on left node

 end

 output current node value

 if right node exists

 call tree_scan on right node

 end

end

3.4.3. Binary Search

A search on a sorted list can be conducted using a binary

search.

This is a fast and simple technique that requires

approximately log2(n)-1 comparisons to locate an item.

In a list of one million items, this corresponds to

approximately 19 comparisons.

In contrast a direct scan of the list would require an

average of half a million comparisons.

A binary search is performed by comparing the search

string with the item in the centre of the list. If the search

string has a lower value than the central item, then the

first half of the list is selected, otherwise the second half

is selected.

The process then repeats, dividing the selected half in

half again. This process is repeated until the item is

located.

Subroutine binary_search

 found as integer

49

 top_item as integer

 bottom_item as integer

 middle_item as integer

 found = False

 bottom_item = start_item

 top_item = end_item

 while not found And bottom_item < top_item

 middle_item = (bottom_item + top_item) / 2

 if search_val = data(middle_item)

 found = True

 else

 if search_val < data(middle_item)

 top_item = middle_item - 1

 else

 bottom_item = middle_item + 1

 end

 end

 end

 if not found Then

 if search_val = data(bottom_item)

 found = True

 middle_item = bottom_item

 end

 end

 binary_serach = middle_item

end

3.4.4. Date Data Types

Some languages do not directly support date data types,

while other languages support date data types but

implement a restricted data range.

Dates may be recorded internally as text strings, however

this may make comparisons between data values

difficult.

Alternatively, data variables may be implemented as a

numeric variable that records the number of days

between a base date and the data value itself.

50

When a date variable is implemented as a two byte

signed integer value, this date value covers a maximum

data range of 89 years.

Depending on the selection of the base date, the earliest

and latest dates that can be recorded may be less than 30

years from the current date.

Dates implemented in this way cannot be used to

represent a date in a long series of historical data, and

these date ranges may be insufficient to record long-term

calculations in some applications.

The Julian calendar is based on the number of days that

have elapsed since the 1st of January, 4713 BC.

Julian data values can be stored in a four-byte integer

variable.

Integer variables are convenient to use and operations

with integer data types execute quickly. Two dates stored

as Julian variables can be directly compared to determine

whether one date is earlier than the other date.

Conversion between a julian value and a system date

using a two byte value can be done by substracting a

number equal to the number of days between the system

base date and the julian base date.

The following algorithm can be used to calculate a julian

date.

 Jdate = 367 * year – int(7 * (year

 + int((month + 9) / 12)) / 4)

- int(3 * (int((year + (month

– 9) / 7)

 / 100) + 1) / 4)

 + int(275 * month / 9) + day +

1721028.5

51

3.4.5. Solving Equations

In some cases, the value of a variable in an equation

cannot be determined by direct calculation.

For example, in the equation “y = x + x2”, the value of

“x” cannot be calculated directly from the equation.

In these cases, an iterative approach can be used.

This involves using an initial guess of the solution, and

then repeatedly calculating the result and determining a

more accurate estimate of the solution with each

iteration.

The following method uses two estimates of the result,

and calculates a straight line between the values to

determine an improved estimate of the solution.

This process continues, with the two most-recent values

being carried forward as new estimates are produced.

Given reasonable initial guesses, this method may

generate a solution with an accuracy of six significant

figures within five to ten iterations.

This method does not use the derivative of the function

or estimate the slope of the line from individual values.

When a curve displays a jagged shape, problems can

arise with methods that use the slope of the curve.

Jagged curves have a smooth shape at large scales, but

the detail of small sections of the curve may display

sharp movements.

This can occur in practical situations where the curve is

derived from a large number of individual values that are

related in a broad way, but where small changes in the

pattern of values may result in small random movements

in the curve.

52

The following code outlines a subroutine using this

method.

‘ y = f(x) is the function being evaluated.

‘

‘ Ensure that x=0 or some other value for ‘x’ does

not

‘ generate a divide-by-zero

‘

‘ y_result is the known “y” value

‘ x_result is the value of “x” that is calculated

for “y_result”

subroutine solve_fx(y_result as floating_point,

x_result as floating_point)

 define attempts as integer

 define x1, x2, x3, y1, y2, y3, m, c as

floating_point

 constant MAX_ATTEMPTS = 1000

 attempts = 0

 ‘ use estimates that are reasonable and are

likely

 ‘ to be on either side of the correct result

 x1 = 1

 x2 = 10

 y1 = f(x1)

 y2 = f(x2)

‘ repeat while “y2” is further than

0.

00

00

01

fr

om

“y

_t

ar

ge

t”

 while (absolute_value(y_target – y2) > 0.000001

 AND attempts <

MAX_ATTEMPTS)

 ‘ line between x1,y1 and x2,y2

 If x2 - x1 <> 0 then

53

 m = (y2 – y1)/(x2 – x1)

 c = y1 – m * x1

 else

 ‘ unstable f(x), x1=x2 but y1<>y2

 attempts = MAX_ATTEMPTS

 end

 ‘ calculate a new estimate of ‘x’

 x3 = (y_target – c) / m

 y3 = f(x3)

 ‘ roll over to the two latest points

 x1 = x2

 y1 = y2

 x2 = x3

 y2 = y3

 attempts = attempts + 1

 end

 if attempts >= MAX_ATTEMPTS then ‘ failed to

find solution

 solve_fx = false

 x_result = 0

 else

 solve_fx = true

 x_result = x2

 end

end

54

3.4.6. Randomising Data Items

In some applications, values are selected from a

collection of items in a random order.

This can be implemented easily using an array and a

random number generator when the items can be

repeatedly selected.

However, when each item must be selected once, but in a

random order, this process may be difficult to implement

efficiently.

Selecting items from an array and then compacting the

array to remove the blank space would involve an order

of n2 operations to move elements within the array.

Items can be deleted directly from a linked list, however

link list items cannot be directly accessed and so cannot

be selected at random.

The following method randomises an input list of data

items using a method that involves an order of n*log2(n)

operations.

Each item is first inserted into a binary tree. The path at

each node is chosen at random, with a 50% probability of

taking the left or the right path.

The random choice of path ensures that the tree will

remain approximately balanced, regardless of the order

of the input data. Each insertion into the tree would

involve approximately log2(n) comparisons.

When the tree has been constructed, a scan of the tree is

performed to generate the output list.

This can be done with a recursive subroutine that calls

itself for the left subtree, outputs the value in the current

node, then calls itself for the right sub-tree.

55

3.4.7. Subcomponent and Chain Expansion

In some applications, structures may contain sub-

structures or connections that have the same form as the

main structure.

For example, an engineering design may be based on a

structure that contains sub-structures with the same form

as the main structure.

An investment portfolio may contain several

investments, including investments that are parts of other

investment portfolios.

In these cases, the values relating to the main structure

can be determined recursively.

The involves calling a subroutine to process each of the

sub-structures, which in turn may involve the subroutine

calling itself to process sub-structures within the

substructure.

This process continues until the end of the chain is

reached and no further sub-structures are present. When

this occurs, the calculation can be performed directly.

This returns a result to the previous level, which

calculates the result for that level and returns to the

previous level and so forth, until the process unwinds to

the main level and the result for the main structure can be

calculated.

In some cases a loop may occur. This could not happen

in a standard physical structure, but in other applications

an inner substructure may also contain the entire outer

structure.

In the investment portfolio example, portfolio A may

contain an investment in portfolio B, which invests in

portfolio C, which invests back into portfolio A.

56

In a structural example, the data would suggest that a box

A was inside another box B, and that box B was also

inside box A.

This may be due to a data or process error recording a

situation that is physically impossible or does not

represent a definable structure.

A chain such as this cannot be directly resolved, and the

data would need to be interpreted in the context of the

structure as it applied to the particular application being

modelled.

3.4.8. Checksum & CRC

Checksums and CRC calculations can be used to

determine whether a block of data has changed.

This may be used in applications such as data transfers

through data links, checking whether a block of memory

has been altered during a debugging process, and

verification of data within hardware devices.

A checksum may involve summing the individual binary

values within the block and recording the total.

The same calculation could then be performed at a future

time, and a different result would indicate that the data

had been changed.

A checksum is a simple calculation that may detect some

changes, but it does not detect changes such as two

values being exchanged.

A CRC (Cyclic Redundancy Check) calculation can

detect a wider range of changes, including values that

have been transposed.

57

A checksum or CRC calculation cannot guarantee that

the data is unchanged, as this would only be possible

with a random data block by comparing the entire block

with the original values.

However, a 4 byte CRC value can represent over four

billion values, which implies that a random change to the

data would only have a one in four billion chance of

generating the same CRC value as the original

calculation.

These figures would only apply in the case of a random

error. In cases where differences such as transposing

values may occur, this would cause problems with some

calculations such as checksums that would generate the

same result if the data was transposed.

3.4.9. Check Digits

In the case of structured number formats such as account

numbers and credit card numbers, additional digits can

be added to the number to detect keying errors and

partially validate the number.

This can be done by calculating a result from the

number, and storing the result as additional digits within

the number.

For example, the digits may be summed and the result

included as the final two digits within the number.

A more complex calculation would normally be used that

could detect digits that were transposed, as transposition

is a common error and is not detected by a simple sum of

the values.

Verifying a number would be done by performing the

calculation with the main digits, and comparing the

calculated result with the remaining digits in the number.

58

3.4.10. Infix to Postfix Expression Conversion

3.4.10.1. Infix Expressions

Mathematical equations and formulas are generally

presented in an infix format. Binary operators within

infix expressions appear between the two values that

they operate on.

In this context, the term binary does not refer to binary

numbers, but refers to operators that take two arguments,

such as addition.

Arithmetic expressions use arithmetic precedence, so that

some operations, such as multiplication, are performed

before other operators such as addition.

The standard levels of arithmetic precedence are:

1. Brackets

2. Exponentiation xy.

3. Unary minus Negative value such as -

3 or -(2*4)

4. Multiplication, Division

5. Addition, Subtraction

Brackets may be used to group operations and change the

order of operations.

Due to the issue of operator precedence, and the use of

brackets, an infix expression cannot be directly evaluated

by performing the operations in a direct order, such as

from left to right in the expression.

Infix expressions must be parsed before they can be

evaluated. This can be done by using a parser such as a

recursive descent method, and evaluating the expression

as it is parsed or generating intermediate code.

59

3.4.10.2. Postfix Expressions

A postfix expression is an alternative format for

expressing an expression, that places the operators after

the values that they operate on.

Using this format, brackets are not required, and operator

precedence does not need to be applied to the expression

as the precedence is implied in the order of the symbols.

For example, the infix expression “2 + 3 * 5” would be

converted to a postfix expression of “3 5 * 2 +”

Postfix expressions can be evaluated directly from left to

right.

This can be done using a stack, where a value in the

expression is pushed on to the stack, and an operator

pops the arguments from the stack, calculates the result,

and pushes the result on to the stack.

When a valid expression is evaluated, a single result

should remain on the stack after the expression

evaluation is complete, and this should equal the result of

the expression.

Expressions may be stored internally in a postfix format,

so that they can be directly evaluated.

Code generation effectively generates code to evaluate

expressions in a postfix order.

3.4.10.3. Infix to Postfix conversion

Conversion from an infix format to a postfix format can

be done using a binary tree.

During the parse, a tree is built of the expression

containing a node for each operator and value. A binary

60

operator node would have two subtrees, with one

argument appearing in the left sub tree and one argument

appearing in the right sub tree.

These sub trees may themselves be complete

expressions.

The parse tree can be built during the parse, with a node

created at each level and returned to the next highest

level to be connected as a subtree. This results in the tree

being built using a bottom-up approach.

Generating the postfix expression can be done by using a

recursive subroutine to scan the tree. This subroutine

would call itself to process the left sub tree, then call

itself to process the right sub tree, then output the value

in the current node.

The output could be implemented as a series of

instruction stored in a table.

3.4.10.4. Evaluation

The expression can be evaluated by reading each

instruction in sequence. If the instruction is a push

instruction, then the data value is pushed on to the stack.

If the instruction is an operator, then the operator pops

the arguments from the stack, calculated the result, and

pushes the result on to the stack.

For example, the following infix expression may be the

input string

 x = 2 * 7 + ((4 * 5) – 3)

Parsing this expression and building a bottom-up parse

tree would produce a structure similar to the following

diagram.

61

Generating the postfix expression by scanning the parse

tree leads to the following expression.

 x = 4 5 * 3 – 2 7 * +

This expression could be directly translated into

instructions, as in the following list

 push 4

 push 5

 multiply

 push 3

 subtract

 push 2

 push 7

 multiply

 add

Executing the expression would lead to the following

sequence of steps. In this example the stack contents are

shown with the item on the top of the stack shown at the

left side of the column.

4

*

-

5

3 7

*

2

+

62

 Operation Stack contents

 push 4

 4

 push 5

 5 4

 multiply

 20

 push 3

 3 20

 subtract

 -17

 push 2

 2 -17

 push 7

 7 2 -17

 multiply

 14 -17

 add

 -3

This process ends with the stack containing the result -3,

which is the correct result of the original expression.

3.4.11. Regular Expressions

A regular expression is a text pattern-matching method.

Regular expressions form a simple language and can be

translated into a finite state automaton. This allows the

patterns within the input text to be identified in a single

pass, regardless of the complexity of the text patterns.

The operators within a regular expression are listed

below.

a The letter A (or whichever letter or phrase is

selected)

[abc] Any one of the letters a, b or c (or other letters

within brackets)

[^abc] Any letter not being a, b or c (or other letters

within brackets)

a* The letter “a” repeated zero or more times (or

other phrase)

63

a+ The letter “a” repeated one or more times (or

other phrase)

a? The letter “a” occurring optionally (or phrase)

. Any character

(a) The phrase or sub-pattern “a”

a-z Any letter in the range “a” to z” (or other range)

a|b The phase “a” or “b” (or other phrase)

For example, the pattern specifying a variable name

within a programming language may be defined using

the following regular expression

 [a-zA-Z_][a-zA-Z0-9_]*

This would be interpreted as an initial character being a

letter in the range a-z or A-Z, or an underscore character,

followed by a character in the range a-z, A-Z, 0-9 or an

underscore, repeated zero or more times.

This pattern would match text items such as “x”, “_aa”,

“d3”, but would not match patterns such as “3dc” or

“a%s”.

Regular expressions can also be used in text searching.

For example, the following expression would match the

words “text scanning” or “scanning text”, separated by

an characters repeated zero or more times.

 (text.*scanning)|(scanning.*text)

As another example, a search for the word “sub” in

program code may exclude words such as “subtract” and

“subject” by using a pattern such as “sub[^a-z]”. This

would match any text that contained the letters “sub” and

was followed by a character that was not another letter.

3.4.12. Data Compression

64

Data compression is used to reduce storage space, and to

increase the rate of data transfer through communication

channels.

A wide range of data compression techniques and

algorithms are used, ranging from the trivial to the highly

complex.

Data compression approaches include identifying

common patterns within data, and replacing common

patterns with a smaller data items.

In compressing text, run length encoding involves

replacing a string of identical characters, such as spaces,

with a single character and a number specifying the

number of occurrences.

Within a text document, entire words could be replaced

with number codes.

Huffman encoding involves replacing fixed character

sizes with variable bit codes. In standard text, characters

may be represented as eight-bit values. In a section of

text, however, some characters may occur more often

than others.

In this case, frequent characters could be replaced with 5

or 6 bit codes, with less frequent characters replaced with

10 and 11 bit codes.

Compression techniques used with sampled data such as

graphics images and sound falls into two categories.

Lossless techniques preserve the original data when they

are decompressed. This could involve replacing a

repeating section of the data, such as an area containing a

single colour, with a single value and codes representing

the location of the area.

Within data such as video sequences, multiple identical

frames could be replaced with a single frame and a count

of the number of occurrences, and frames that differ

65

slightly could be replaced with a single frame and

information identifying the difference to the next frame.

Compaction techniques could involve storing data such

as six bit values across byte boundaries, rather than

storing each six bit value within a standard eight bit byte

and leaving two bits unused.

Lossy techniques offer a higher compression ratio, but

with a loss in detail of the data. Data compressed using a

lossy method permanently losses detail and cannot be

restored to the original data.

Lossy methods include reducing the number of bits used

to record each data item, replacing adjacent similar areas

with a single value, and filtering data to remove

components such as barely visible or barely audible

information.

Fractal techniques may involve very high compression

ratios. A fractal is an equation that can be used to

generate repeating structures, such as clouds and fern

leaves. Fractal compression involves filtering data and

defining an alternative set of data that can be used to

generate a similar image or information to the original

data.

66

3.5. Techniques

3.5.1. Finite State Automaton

A finite state automaton is a model of a simple machine.

The machine works by receiving input characters, and

changing to a new state based on the current state and the

input character received.

This is a simple but very powerful technique that can be

used in a wide range of applications.

Finite state machines are able to detect complex patterns

within input data. Due to their simple operation, a finite

state machine executes extremely quickly.

The FSA consists of a loop of code, and a state transition

table that specifies the next state to change to, based on

the current state and the next input character.

A complex model increases the size of the data table,

however the code remains unchanged and the execution

requires only a single array reference to process each

input character.

Parsing program code can be performed by defining a

grammar of the language structure, and using an

algorithm to convert the grammar definition into a finite

state automaton.

Text patterns can be specified using regular expressions,

which can also be translated into an FSA.

An example of a finite state automaton is the following

description of a state transition table that identifies a

certain pattern within text.

67

This is a pattern that defines program comments that

begin with the sequence “/*” and end with the sequence

“*/”.

68

State Next Character Next State Within a comment

1 not “/”” 1 No

 “/” 2

2 not “*” or “/” 1 No

 “/” 2

 “*” 3

3 not “*” 3 Yes

 “*” 4

4 not “*” or “/” 3 Yes

 “*” 4

 “/” 1

The system begins in state 1, and each character is read

in turn. The next state is determined from the current

state and the input character.

For example, if the system was in state 2 at a certain

point in the processing, and the next character was a “/”,

then the system would remain in state 2. If the character

1

2

3

4

/

Not /

Not * or /

/

/

*

Not *

Not * or / *

 *

69

was a “*”, the system would change to state 3, and for

any other character the system changes to state 1.

The current state could be stored as the value of an

integer variable.

The process would continue, changing state each time a

new character was read until the end of the input was

reached.

During processing, any time that the current state was

state 3 or state 4, this would indicate that the processing

was within a comment, otherwise the processing would

be outside a comment.

This process could be used to extract comments from the

code.

No backtracking is required to handle sequences such as

“/*/**/” that may appear within the text

3.5.2. Small Languages

In some applications a language may be developed

specifically for a single application.

This may involve developing a macro language for

specifying formulas and conditions, where the language

code could be stored in a database text field or used

within an application.

Another example may involve a language for defining

the chemical structure of molecules and compounds.

This would be a declarative language and would not

involve generating code and execution, however it would

involve lexical analysis and parsing to extract the

individual items and structures within the definition.

A language can be defined with statements, data objects

and operators that are specific to the task being

70

performed. For example, within a database management

system a task language could be defined with data types

representing a record, index node, cache table entry etc,

and operators to move records between buffers, data

pages and disk storage.

Routines could then be written in the task language to

implement procedures such as updating a record,

creating a new index and so forth.

The broad steps involved in implementing a small

language are:

• Lexical analysis

• Parsing

• Code Generation

• Execution

3.5.2.1. Lexical Analysis

Lexical analysis is the process of identifying the

individual elements within the input text, such as

numbers, variable names, comments, and operators such

as “+” and “<=”.

This process can be done using procedural code.

Alternatively, the patterns can be defined as regular

expression text patterns, and an algorithm used to

convert the regular expressions into a finite state

automaton that can be used to scan the input text.

The lexical analysis phase may produce a series of

tokens, which are numeric codes identifying the elements

in the input stream.

The sequence of tokens can be stored in a table with the

numeric code for the token, and any associated data

value such as the actual variable name or number

constant.

71

3.5.2.2. Parsing

Parsing or syntax analysis is the process of identifying

the structures within the input text.

The language can be defined using a grammar definition

which would specify the structure of the language.

One approach is to use an algorithm to convert the

grammar to a finite state automaton for parsing, however

this may be a complex process.

Another alternative is to use a recursive descent parser,

which is a fast and simple parsing technique that is

relatively easy to implement.

3.5.2.3. Direct Execution

When the language consists of expressions only, and

does not involve separate statements, the value of the

expression can be calculated as it is being parsed.

This would involve calculating a result at each point in

the recursive descent parser and passing the result back

up to the previous level of the expression.

An advantage of this method is that it is simple to

implement, and no further stages would be required in

the processing.

However, this method would involve parsing the

expression every time it was evaluated. If a single

formula was applied to many data items then this

approach would be slower than continuing the process to

a code generation stage.

Also, this method may not be practical when the

language includes statements such as conditions and

loops.

72

3.5.2.4. Code Generation

Code generation may involve generating intermediate

code that is executed by a run-time processing loop.

The intermediate code could consist of a table of

instructions, with each entry containing an instruction

code and possibly other data, such as a variable name or

variable reference.

Instructions would be executed in sequence, and branch

instructions could be added to jump to different points

within the code based on the results of executing

expressions within “if” statements and loop conditions.

As each structure within the code is parsed, intermediate

code instructions could be generated. This could involve

adding additional entries to the table of intermediate

code.

Using a stack to execute expressions, the basic

operations of a simple third-generation language could

be implemented using the following instructions.

Variable name reference

 PUSH variable name (pushes a new value on to the

stack)

Assignment operator

 POP variable name (removes a value from the

stack and stores

it in the variable)

Operator (e.g. multiplication)

 MULT (e.g. multiply the top two

stack values

73

and replace with the

result)

“if” statement

 Allocate label position X

 Generate code for the “if” condition

 Generate a TEST jump instruction to jump to label X if

stack result is false

 Generate the code for the statement block within the “if”

statement

 Define the position of label X as this point in the code

Loop

 Allocate label position X

 Allocate label position Y

 Define this position in the code as the position of label Y

 Generate code for the loop expression condition

 Generate a TEST jump instruction to jump to label X if

stack result is false

 Generate the code for the loop statements

 Generate a jump instruction to label Y

 Define label X as this position in the code

When the code has been generated, a second pass can be

done through the code to replace the label names with

the positions in the code that they refer to.

In this code the MULT operator is used as an example

and similar code could be generated for each arithmetic

operation, for comparison operators such as “<”, and for

Boolean operators such as “AND”.

No processing is required for brackets, as this is

automatically handled by the parsing stage. The parsing

operation ensures that the code is generated in the correct

sequence to be executed directly using a stack.

3.5.2.5. Run-Time Execution

74

When the intermediate code has been generated, it can be

executed using a run time execution routine.

This routine would read each instruction in turn and

perform the operation. The operations could include

retrieving a variable’s value and pushing it on to the

stack, popping a result from the stack and storing it in a

variable, performing an operation, such as MULT or

LESSTHAN, and placing the result on the stack, and

changing the position of the next instruction based on a

jump instruction.

In the case where all values were numeric, including

instructions, jump locations and variable location

references, execution speed could be quite high.

3.5.3. Recursion

Recursion is a simple but powerful technique that

involves a subroutine calling itself.

This subroutine call does not erase the previous

subroutine call, but forms a chain of calls that returns to

the previous level as each call terminates.

Recursion is used for processing recursively defined data

structures such as trees. Many algorithms are also

recursive or include recursive components.

For example, the quicksort algorithm sorts lists by

selecting a central pivot element, and then moving all

items that are less that the pivot element to the start of

the list, and the items that are larger than the pivot

element to the end of the list.

This operation is then performed on each of the two

sublists. Within each sublist, two other sublists will be

created and so the process continues until the entire list is

sorted.

75

This algorithm can be implemented using a recursive

subroutine that performs a single level of the process,

and then calls itself to operate on each of the sub parts.

The recursive descent parsing method is a recursive

method where a subroutine is called for each rule within

the language grammar, and subroutines may indirectly

call themselves in cases such as brackets, where an

expression may exist within another expression.

A scan of a binary tree would generally be done using a

recursive routine that processes a single node and then

calls itself to process each of the sub trees.

Recursive code can be significantly simpler than

alternative implementations that use loops.

In some languages a subroutine call erases the previous

value of the subroutine’s variables and recursion is not

directly supported.

In these cases, a loop can be used with a stack data

structure implemented as an array. In this case a new

value is pushed on to the stack when a subroutine call

would occur, and popped from the stack when a

subroutine call would terminate.

3.5.4. Language Grammars

Some programming languages use a syntax that is based

on a combination of specific text layout details, and

formal structures for expressions.

In other cases, the language structure can be completely

specified by using a formal structure such as a BNF

(Backus Naur Form) grammar.

This is a simpler and more flexible approach than using a

layout definition, both for parsing and for using the

language itself.

76

The use of a BNF grammar has the advantage that a

parser can be produced directly from the grammar

definition using several different methods.

For example, a recursive descent parser can be

constructed by writing a subroutine for each level in the

grammar definition.

A BNF grammar consists of terminal and non-terminal

items. Terminals represent individual input tokens such

as a variable name, operator or constant.

Non-terminals specify the format of a structure within

the language, such as a multiplication expression or an

“if” statement.

Non-terminals may be defined with several alternative

formats. Each format can contain a combination of

terminal and non-terminal items.

The definitions for each rule specify the structures that

are possible within the grammar, and may result in the

precedence of different operators such as multiplication

and addition being resolved though the use of different

non-terminal rules.

The example below shows a BNF grammar for a simple

language that includes expressions and some statements.

statementlist: <statement>

 <statement> <statementlist>

statement: IF <expression> THEN

<statementlist> END

 WHILE <expression>

<statementlist> END

 variable_name = <expression>

expression: <addexpression> AND

<expression>

 <addexpression> OR

<expression>

77

addexpression: <multexpression> +

<addexpression>

 <multexpression> -

<addexpression>

multexpression: <unaryexpression> * <

multexpression >

 <unaryexpression > / <

multexpression >

unaryexpression: constant

 variable_name

 - <expression>

 (<expression>)

3.5.5. Recursive descent parsing

Recursive descent parsing is a parsing method that is

simple to implement and executes quickly.

This method is a top-down parsing technique that begins

with the top-level structure of the language, and

progressively examines smaller elements within the

language structure.

Bottom-up parsing methods work by detecting small

elements within the input text and progressively building

these up in to larger structures of the grammar.

Bottom-up techniques may be able to process more

complex grammars than top-down methods but may also

be more difficult to implement.

Some programming languages can be parsed using a top-

down method, while others use more complex grammars

and require a bottom-up approach

78

Recursive descent parsing involves a subroutine for each

level in the language grammar. The subroutine uses the

next input token to determine which of the alternative

rules applies, and then calls other subroutines to process

the components of the structure.

For example, the non-terminal symbol “statement” may

be defined in a grammar using the following rule:

statement: IF <expression> THEN

<statementlist> END

 WHILE <expression>

<statementlist> END

 variable_name = <expression>

The subroutine that processes a statement would check

the next token, which may be an “IF”, a “WHILE”, a

variable name, or another token which may result in a

syntax error being generated.

After detecting the appropriate rule, the subroutines for

“expression” and “statementlist” would be called. Code

could then be generated to perform the jumps in the code

based on the conditions in the “if” statement or loop, or

in the case of the assignment operator, code could be

generated to copy the result of the expression into the

variable.

Grammars can sometimes be adjusted to make them

suitable for top-down parsing by altering the order within

rules without affecting the language itself.

For example, changing the rule for an “addexpression” in

the following way could be used to make the rule

suitable for top-down parsing without altering the

language.

Initial rule:

addexpression: <addexpression> +

<multexpression>

79

Adjusted rule

addexpression: <multexpression> +

<addexpression>

In the adjusted rule the next level of the grammar,

“multexpression”, can be called directly.

When a language is being created, adjustments can be

made to the grammar to make it suitable for parsing

using this method. This may include inserting symbols in

positions to separate elements of the language.

For example, the following rule may not be able to be

parsed as the parser may not be able to determine where

an “expression” ends and a “statementlist” begins.

statement: IF <expression>

<statementlist> END

This language could be altered by inserting a new

keyword to separate the elements in the following way:

statement: IF <expression> THEN

<statementlist> END

A recursive descent parse may involve generating

intermediate code, or evaluating the expression as it is

being parsed.

When the expression is directly evaluated, the

calculation can be performed within each subroutine, and

the result passed back to the previous level for further

calculation.

80

The structure of the subroutine calls automatically

handles issues such as arithmetic precedence, where

multiplications are performed before additions.

3.5.6. Bitmaps

Bitmaps involve the use of individual bits within a

numeric variable.

This may be used when data is processed as patterns of

bits, rather than numbers. This occurs with applications

such as the processing of graphics data, encryption, data

compression and hardware interfacing.

Typically data is composed of bytes, which each contain

eight individual bits. Integer variables may consist of 1,

2, or 4 bytes of data.

In some languages a continuous block of memory can

accessed using a method such as an array of integers,

while in other languages the variables in the array are not

guaranteed to be contiguous in memory and there may be

spaces between the individual data items.

Bitmaps can also be used to store data compactly. For

example, a Boolean variable may be implemented as an

integer value, but in fact only a single bit is required to

represent a Boolean value.

Storing several Boolean flags using different bits within

a variable allows 16 independent Boolean values to be

recorded within a 2-byte integer variable.

Storing flags within bits allows several flags to be passed

into subroutines and data structures as a single variable.

Bit manipulation is done using the bitwise operators

AND, OR and NOT.

81

The bitwise operators have the following results

 AND 1 if both bits are set to 1, otherwise the result is 0

 OR 1 if either one bit or both bits are set to 1,

otherwise the result is 0

 NOT 1 if the bit is 0 and 0 if the bit is 1

 XOR 1 if one bit is 1 and the other bit is 0, otherwise

the result is 0

The operations performed on a bit are testing to check

whether the bit is set, setting the bit to 1, and clearing the

bit to 0.

A bit can be checked using an AND operation with a test

value that contains a single bit set, which is the bit being

tested.

For example

Value 01011011

Test Value 00001000

Value AND Test Value 00001000

If the result is non-zero then the bit being checked is set.

Constants may be written using hexadecimal numbers or

decimal numbers.

In the case of decimal values, the value would be two

raised to the power of the position of the bit, with

positions commencing at zero in the rightmost place and

increasing to the left of the number.

In the case of hexadecimal numbers, each group of four

bits corresponds to a single hexadecimal digit.

The following numbers would be equivalent

Binary 01011011

Hexadecimal 5B

82

A bit can be set using the OR operator with a test value

than contains a single bit set.

For example

Value 01011011

Test Value 00000100

Value OR Test Value 01011111

A bit can be cleared by using a combination of the NOT

and AND operators with the test value

For example

Value 01011111

Test Value 00000100

NOT Test Value 11111011

Value AND NOT Test Value 01011011

3.5.7. Genetic Algorithms

Genetic algorithms are used for optimisation problems

that involve a large number of possible solutions, and

where it is not practical to examine each solution

independently to determine the optimum result.

For example, a system may control the scheduling of

traffic signals. In this example, each signal may have a

variable duty cycle, being either red or green for a fixed

proportion of time, ranging from 10% to 90% of the

time. This represents nine possible values for the duty

cycle.

One approach would be to set all traffic signals to a 50%

duty cycle, however this may impede natural traffic flow.

83

In a city-wide traffic network with 1000 traffic signals,

there would be 91000 possible combinations of traffic

signal sequences.

This is an example of an optimisation problem involving

a large number of independent variables.

A genetic algorithm approach involves generating

several random solutions, and creating new solutions by

combining existing solutions.

In this example, a random set of signal sequences could

be created, and then a simulation could be used to

determine the approximate traffic flow rates based on the

signal sequences and typical road usage.

After the random solutions are checked, a new set of

solutions is generated from the existing solutions.

This may involve discarding the solutions with the

lowest results, and combining the remaining solutions to

generate new solutions.

For example, two remaining solutions could be

combined by selecting a signal sequence for each traffic

signal at random from one of the two existing solutions.

This would result in a new solution which was a

combination of the two existing solutions.

New random solutions could then be generated to restore

the total number of solutions to the previous level.

This cycle would be repeated, and the process is

continued until a solution that meets a threshold result is

found, or solutions may be determined within the

processing time available.

In some cases a genetic algorithm approach can locate a

superior solution in a shorter period of time than

alternative techniques that use a single solution that is

continually refined.

84

85

3.6. Code Models

Code can be structured in various ways. In some cases,

different code models can be combined within a single

section of code.

In other cases, changing the code model involves a

fundamental change which turns the code inside-out, and

involves completely rewriting the code to perform the

same function as the original program.

Changing code models can have a drastic effect on the

volume of code, execution speed and code complexity.

3.6.1. Process Driven Code

Process driven code involves using procedural steps to

perform specific processing.

This approach leads to clear code that is easy to read and

maintain. Process driven code can be developed quickly

and is relatively easy to debug.

However, large volumes of code may be produced.

Also, systems written in this way may be inflexible, and

large sections of code may need to be rewritten when a

fundamental change is made to a database structure or a

process.

3.6.2. Function Driven Code

Function driven code involves developing a set of

modules that perform general functions with sets of data.

86

The application itself is written using code that calls the

general facilities to perform the actual processes and

calculations.

Function driven code may involve smaller code volumes

than process driven code, however the code may be more

complex.

Function driven code may follow a definitional pattern.

For example, a process driven approach to printing a

report may involve calling subroutines to read the data,

calculate figures, sort the results, format the output and

print the report.

Each subroutine would perform a single step in the

process.

In a function driven approach, subroutines may be called

to define the data set, define the calculations, specify the

sort order, select a formatting method, and finally

generate and print the report.

The report generation and printing would be done using a

general routine, based on the definitions that had been

previously selected.

3.6.3. Table Driven Code

Table driven code can be used in processes that involve

repeated calls to the same subroutine or process.

Table driven code involves creating a table of constants,

and writing a loop of code that reads the table and

performs a function for each entry in the table.

For example, the text items on a menu or screen display

could be stored in a table.

87

A loop of code would then read the table and call the

menu or screen display function for each entry in the

table.

This approach is also used in circumstances such as

evaluating externally-defined formulas, where the

formula may be parsed and intermediate code may be

stored in an array. Each instruction in the array would

then be executed in sequence using a loop of code.

Table driven code can lead to a large drop in code

volumes and an increase in consistency in circumstances

where it is applicable.

Table entries can be stored in program variables as arrays

of structure types, or in database tables.

Table driven code is a large-data, small code model,

rather standard procedural code which is a large code,

small data model.

Small code models, such as using table driven code or

run-time routines to execute expressions, are generally

simpler to write and debug and more consistent in output

than small data models.

3.6.4. Object Orientated Code

Object orientated code is a data-centred model rather

than a function-centred model

Objects are defined that contain both data and

subroutines, known as methods.

Methods are attached to a data variable, and a method

can be executed by referring to the data variable and the

method name.

88

This is a fundamentally different approach to function-

centred code, which involves defining subroutines

separately to the data items that they may process.

Object orientated code can be used to implement flexible

function-driven code, and is particularly useful for

situations that involve objects within other objects.

However, object orientated code can become extremely

complex and can be difficult to debug and maintain.

For example, many object orientated systems support a

hierarchical system known as inheritance, where objects

can be based on other object. The object inherits the data

and methods of the original object, as well as any data

and methods that are implemented directly.

In an object model containing many levels, data and

methods may be implemented at each level and

interpreting the structure of the code may be difficult.

Also, an object model based on the application objects,

rather than an independent set of concepts, can be

complex and require extensive changes when major

changes are made to the structure of the application

objects.

This issue also applies to database structures based on

specific details such as specific products or specific

accounts, rather than general concepts.

3.6.5. Demand Driven Code

Demand driven code takes the reverse approach to

control flow compared to standard process-driven code.

Standard process driven code operates using a feed-

forward model, where a process is performed by calling

each subroutine in order, from the first step in the

process to the final stage.

89

Demand driven code operates by calling the final

subroutine, which in turn calls the second-last subroutine

to provide input, and so forth back through the chain of

steps.

This leads to a chain of subroutine calls that extend

backwards to the earliest subroutines, and then a chain of

execution that extends forward to the final result.

This approach can simply control flow in a complex

system with many cross-connections between processes.

Demand-driven code applies to event-driven systems,

functional systems, and systems that are focused on

generating a particular output, rather than performing a

specific process.

This may apply to software tools for example.

In an example of displaying a 3-dimensional image of a

construction model, a function may be called to display

the image.

Before displaying the data, this subroutine may call

another subroutine to generate the data, which initially

calls a subroutine to construct the model, which initially

calls a subroutine to load the model definition.

When the end of the chain was reached, the execution

would begin with loading the model definition, then

return to construct the model, followed by generating the

data, and finally the original code of displaying the

image.

In some cases, a process may already have been

performed and a flag could be checked to determine

whether another subroutine call was necessary.

In cases where there were multiple cross-connections,

each subroutine could be defined independently, and a

call to any subroutine would generate a chain of

90

execution that would lead to the correct result being

produced.

This approach allows a wide range of functions to be

performed by a set of general facilities.

Disadvantages with demand-driven code include that fact

that the execution path is not directly related to a set of

procedural steps, which may make checking and

debugging the code more difficult.

3.6.6. Attribute Driven Code

Attribute driven code is an extension of a function-driven

approach, where each function performs actions that are

defined by a set of flags and options.

Ideally the flags and options would be orthogonal, which

each flag and option being selected independently, and

each combination supported by the function.

These functions can be implemented by implementing

each flag and option as a separate stage in the code,

rather than implementing separate code for specific

combinations of flags and options.

Where this approach is taken, the number of code

sections required is equal to the number of flags and

options, while the number of functions that can be

performed is equal to the product of the number of

values that each flag and option can take.

For example, is a reporting module implemented two

sorting orders, five layout types, and three subtotalling

methods, then three sections of code would be required

to implement the three independent options.

However, the number of possible output formats would

be 2x5x3, which would be 30 possible output formats.

91

Attribute driven code can be used to combine several

related processes or functions into a single general

function.

When the code to implement individual combinations of

options is replaced by code to implement each option

independently, this may lead to a reduction in the code

volume, and also an increase in the number of functions

that are available.

3.6.7. Outward looking code

Outward looking code applies at a subroutine and

module level.

Outward looking code makes independent decisions to

generate the result that has been requested by calling the

function.

For example, a subroutine may be called to display a

particular object on the screen. In a standard process-

driven or function-driven approach, this may simply

perform a direct action such as displaying the object.

However, an outward looking function may check the

existing screen display, to discover that the object is

already displayed. In this case no action needs to be

taken. Alternately, the object may be displayed but may

be partially hidden by another object, in which case the

other object could be moved to enable the main object to

become fully visible.

Code written in this was is easier to use and more

flexible than code that directly performs a specific

process.

This allows the calling program to call a subroutine to

achieve a particular outcome, with the subroutine itself

taking a range of different actions to perform the action

depending on current circumstances.

92

This approach moves the logic that checks the current

conditions from within the calling program into the

outward looking module. When the module is called

from different parts of the code, and in different

circumstances, this leads to a net reduction in code size

and complexity.

This also localises the code that checks the conditions

with the operations within the subroutine

Outward looking code may simplify program

development, as the calling program code may be

simpler, and the outward looking module could be

developed independently of other code.

Another example may involve printing multiple sub-

heading levels on a report, where some sections may be

blank and the heading may not be required. In this case, a

subroutine could be called directly to print a line of data.

This subroutine could then check whether the correct

subheadings were already active, and if not then a call to

a subroutine could be made to print the headings before

printing the data itself.

Outward looking code refers to external data and this

may introduce a sequence dependence effect. However,

sequence independence is maintained if the parameters to

the subroutine fully specify the outcome of the process,

even through the subroutine may take different actions to

achieve the results, depending on the external

circumstances.

For example, the subroutine “next_entry()” is explicitly

sequence dependant, as it returns the next entry in a list

after the previous call to the subroutine. However, a

subroutine that adjusted the screen layout to match a

specified pattern, and performed varying actions

depending on the current screen layout, would arrive at

the same result regardless of previous operations.

93

A disadvantage of this approach is that the outward

looking module may take varying and unexpected

actions. This may cause difficulties when the action

results in side effects that may not have occurred if the

subroutine used a standard process-driven approach.

3.6.8. Self Configuring Code

Self-configuring code is code that automatically selects

calculation methods, processing methods, output formats

etc.

For example, a report module may automatically add

subtotals to any report that has a large number of entries,

a screen display routine may automatically select a

display format based on the values of the numbers being

displayed, and a calculation engine may select from a

number of equation-solving techniques based on the

structure of an equation.

This approach reduces the amount of external code that

is required to use a general facility.

For example, a calculation engine that solved an equation

without the need to specify other parameters may be a

more useful facility than one that required several steps

and options, such as initialising the calculation, selecting

a solving method, selecting initial conditions, selecting a

termination threshold and performing the calculation.

In cases where the automatically selected approach is not

the desired outcome, an override option could be used to

specify that a specific method should be used in that

case.

3.6.9. Task-Specific Languages

94

In some cases a simple language can be created purely

for a particular application or program.

For example, in an industrial process control

environment a language could be created with statements

to open and close valves, check sensors, start processes

and so forth.

The process itself could be written using the newly-

defined language.

This new program could then be compiled and stored in

an intermediate code format, with a simple run-time

interpreter loop used to execute the instructions.

This operation could be done by writing the entire

application in the task language. However, a simpler

approach may involve using standard code for the

structure of the program and using a set of expressions

and statements in the task language for specific

functions.

This approach may be used in situations where memory

storage is extremely limited, as the numeric instructions

for the task language may consume less memory space

than using standard program code for the entire program.

This method would produce a flexible system where the

process itself could be easily modified.

However, implementing this system would involve

writing a parser, code generator and run-time interpreter

in addition to developing the process itself.

This approach may also make debugging more difficult

as there would be several stages between the process

itself and the results, with the possibility that a bug may

appear in any one of the stages.

95

3.6.10. Queue Driven Code

A queue is a data channel that provides temporary

storage of data. Data that is retrieved from a queue is

retrieved in the same order in which it was inserted into

the queue.

Data that is inserted into a queue accumulates until it is

retrieved, up to the maximum capacity of the queue.

A single process may insert data into a queue and

retrieve the data at a later time, although in many cases

separate processes insert data into the queue and retrieve

data from the queue.

Queues can be used in communication between

independent processes and between programs and

hardware devices.

The generating process may generate data independently,

or it may generate data in response to a request from the

receiving process.

This can be handled in a number of ways. These include

the following methods:

• Checking a status flag in the queue to indicate

that data it requested.

• Being triggered automatically when the queue is

empty and a data request is made.

• Receiving a message from the receiving process.

• Generating data continuously while the queue is

not full.

At the receiving end of the queue, the receiving process

may be triggered when data arrives in the queue, or it

may poll the queue to continually check whether data is

present.

In order to request data, the receiving process may send a

message to the generating process and wait for data to

96

appear in the queue, or it may attempt to extract data

from the queue, which may automatically trigger the

generating process when the queue is empty.

When a receiving process attempts to retrieve data from

the queue and the queue is empty, this may return an

error condition or halt the receiving process until data

arrives.

This process may also set a status flag in the queue that

the generating process can check, automatically trigger

the generating process, or take no action until data

arrives in the queue.

3.6.11. User Interface Structured

In some applications the user interface forms the

backbone of the application.

The menu system or objects within the user interface

may form the structure of the system, with sections of

code attached to each point in the process.

This structure has advantages in separating the code into

separate sections. Under this model, the code may be

broken in to a large number of small sections that can be

developed independently.

Functions can be easily added and removed with this

structure. This structure may be suitable for applications

that involved a large number of user interface items, with

each item relating to a relatively small volume of

processing.

Disadvantages with this approach include the fact that

the user interface and code would be closely intertwined,

and this could cause problems if the system was ported

to a different operating environment or user interface

model.

97

Also, the internal processing could not easily be accessed

independently, for tasks such as automated processing

and testing.

There may be considerable duplication between different

processes and in situations where the internal processing

is complex an alternative model such as separating the

user interface and processing code into separate sections

may be more effective.

98

3.6.12. Code Model Summary

Code Model Structure

Process driven code Sequential statements used to

perform processes.

Function driven code Functions that perform general

operations with data and

perform configurable

processes.

Table driven code Tables of data used as inputs to

functions and subroutines.

Object orientated code Objects containing data and

subroutines to operate on the

data.

Demand driven code Code that calls pre-requisite

functions. A backward chain

of subroutine calls occurs,

followed by a forward chain of

execution.

Attribute driven code General functions controlled

by flags and options.

Outward looking code Code that is called with a

specified target result, and

takes varying actions to

achieve the result.

Self configuring code Code that automatically selects

calculation methods, and

processing methods, output

formats etc.

Task specific languages A small language developed

for the application, with

application code written in the

task language

Queue driven code Independent processes sending

99

data through queues, and

triggered automatically or by

messages.

User Interface Structured Sections of code attached to used

interface objects such as menu

items.

100

3.7. Data Storage

3.7.1. Individual Files

Software tools often use individual files for storing data.

For example, an engineering design model may be stored

as an individual file.

This approach allows files to be copied, moved and

deleted individually, however this approach becomes

impractical when a large number of data objects are

involved.

3.7.2. Document Management Systems

Document storage systems are used in environments that

involve a large number of documents. These may simply

be mail messages, memos and workflow items, or they

could also store large volumes of scanned paper

documents.

Document management systems include facilities for

searching and categorising documents, displaying lists of

documents, editing text and mailing information to other

locations.

These systems may also include programming languages

that can be used to implement applications such as

workflow systems.

3.7.3. Databases

3.7.3.1. Database Management Systems

101

A database management system is a program that is used

to store, retrieve and update large volumes of data within

structured data files.

Database management systems typically include a user

interface that supports ad-hoc queries, reports, updates

and the editing of data.

Program interfaces are also supported to allow programs

to retrieve and update data by interfacing with the

database management system.

Some operating systems include database management

systems as part of the operating system functionality,

while in other cases a separate system is used.

3.7.3.2. Data Storage

Databases typically store data based on three structures.

A field is an individual data item, and may be a numeric

data item, a text field, a date, or some other individual

data item.

A record is a collection of fields.

A table is a collection of data records of the same type. A

database may contain a relatively small number of tables

however each table may contain a large number of

individual records.

Primary data is the data that has been sourced externally

from the system. This includes keyed input and data that

is uploaded from other systems.

Derived data is data than has been generated by the

system and stored in the database.

In some cases derived data can be deleted and re-

generated from the primary data.

102

Links between records can be handled using a pointer

system or a relational system.

In the pointer model, a parent record contains a pointer to

the first child record. Following this pointer locates the

first child record, and pointers from that record can be

followed to scan each of the child records.

In the relational model, the child record includes a field

that contains the key of the parent record. No direct links

are necessary, and each record can be updated

individually without affecting other records.

The relational model is a general model that is based

simply on sets of data, without explicit connections

between records.

In the relational model, the child record refers to the

parent record, which is the opposite approach to the

pointer system, in which the parent record refers to the

child record.

3.7.3.2.1. Keys

The primary key of a record is a data item that is used to

locate the record. This can be an individual field, or a

composite key that is derived from several individual

fields combined into a single value.

A foreign key is a field on a record that contains the

primary key of another record. This is used to link

related records.

Keys fields are generally short text fields such as an

account number or client code. Composite keys may be

composed of individual key fields and other fields such

as dates.

103

The use of a short key reduces storage requirements for

indexes, and may also avoid some problems when

multiple layers of software treat characters such as

spaces in different ways.

3.7.3.2.2. Related Records

Records in different tables may be unrelated, or they may

be related on a one-to-one, one-to-many, or many-to-

many basis.

A one-to-one link occurs when a single record in one

table is related to a single record in another table.

Multiple record formats are an example of this, where

the common data is stored in a main table, and specific

data for each alternative format is stored in separate

tables.

This link can be implemented by storing the primary key

of the main record as a foreign key field in the other

record.

A one-to-many link occurs when a single record in one

table is related to several records in another table.

For example, a single account record may be related to

several transaction records, however a transaction record

only relates to one account.

This is also known as a parent-child connection.

A one-to-many link can be implemented by storing the

primary key of the parent record as a foreign key field in

each of the child records.

A many-to-many link occurs between two data entities

when each record in one table could be related to several

records in the other table.

104

For example, the connections between aircraft routes and

airports may be a many-to-many connection. Each route

may be related to several airports, while each airport may

be related to several routes.

A many-to-many connection can be implemented by

creating a third table that contains two foreign keys, one

for each of the main tables.

Each record in the third table would indicate a link from

a record in one table to a record in the other table.

The record may simply contain two keys, or additional

information could be included, such as a date, and a

description of the connection.

105

The following diagram illustrates a one-to-one database

link.

The following diagram illustrates a one-to-many

database link.

The following diagram illustrates a many-to-many

database link.

106

3.7.3.2.3. Referential Integrity

A problem can occur when a primary key of a record is

updated, but the foreign keys of related records are not

updated to match the change. In this case and link

between the records would be lost.

This situation can be addressed by using a cascading

update. When this structure is included in the data

definition, the foreign keys will automatically be updated

when the primary key is updated.

A similar situation arises with deleting records. If a

record is deleted, then records containing foreign keys

that related to that record will refer to a record that no

longer exists.

Defining a cascading delete would cause all the records

containing a matching foreign key to be deleted when the

main record was deleted.

3.7.3.2.4. Indexes

Databases include data structures know as indexes to

increase the speed of locating records. An index may be

a self-balancing tree structure such as a B-tree.

The index is maintained internally within the database. In

the case of query languages the index is generally

transparent to the caller, and increases access speed but

does not affect the result.

In other cases, indexes can be selected in program code

and a search can be performed directly against a defined

index.

Indexes are generally defined against all primary keys.

107

Also, where records will be accessed in a different order

to the primary key, a separate index may be defined that

is based on the alternative processing order.

Indexes may also be defined on other fields within the

record where a direct access is required based on the

value of another field.

3.7.3.3. Database design

In general each separate logical data entity is defined as a

separate database table.

Also, data that is recorded independently, such as an

individual data item that is recorded on different dates,

may also be defined as a separate table

3.7.3.3.1. Data Types

Data types supported by database management systems

are similar to the data types used in programming

languages. This may include various numeric data types,

dates, and text fields.

Some database systems support variable-length text

fields although in many cases the length of the field must

be specified as part of the record definition, particularly

if the field will be used as part of a key or in sorting.

Unexpected results can occur if numeric values and dates

are stored in text fields rather than in their native format.

For example, the text string “10” may be sorted as a

lower value than “9”, as the first character in the string is

a “1” and this may be lower in the collating sequence

than the character “9”.

108

3.7.3.3.2. Redundant Data

When a data value appears multiple times within a

database, this may indicate that the data represents a

separate logical entity to the table or tables that it is

recorded in.

In this case, the data could be split into a separate data

table.

This would result in a one-to-many link from the new

table to the original table. This would be implemented by

storing the primary key of the new record as a foreign

key within the original records.

This process would generally be done as part of the

original database design, rather than appearing due to

actual duplicated information.

For example, if a single customer name appeared on

several invoices, this would be redundant data and would

indicate that the customer details and invoice details

were independent data entities.

In this case a separate customer table could be created,

and the primary key of a customer record could be stored

as a foreign key in the invoice record.

3.7.3.3.3. Multiple Record Formats

In some cases a single logical entity may include more

than one record format, such as a client table which

includes both individual clients and corporate clients.

Some details would be the same, such as name and

address, while others would differ such as date of birth

and primary contact name.

109

In this case, the common fields can be stored in the main

record, and a one-to-one link established to other tables

containing the specific details of each format.

However, this structure complicates the database design

and also the processing, replacing one table with three

with no increase in functionality.

In cases where the number of specific fields is not

excessive, a simpler solution may be to combine all the

fields into a single record.

This would result in some fields being unused, however

this would simplify the database design and may increase

processing speed slightly.

This may also reduce the data storage size when the

overhead of extra indexes and internal structures is taken

into account.

Some database management systems allow multiple

record formats to be defined for a single table. In these

cases, the primary key and a set of common fields are the

same in each record, while the specific fields for a

particular record format use the same storage space as

the alternative fields for other record formats.

3.7.3.3.4. Coded & Free Format Fields

A coded field is a field that contains a value that is one of

a fixed set of codes. This data item could be stored as a

numeric data field, or it may be a text field of several

characters containing a numeric or alphabetic code.

Free format fields are text fields that store any text input.

Coded fields can be used in processing, in contrast to

free-format fields which can only be used for manual

reference, or included in printed output.

110

Where a data item may be used in future processing, it

should generally be stored in a numeric or coded field,

rather that a general text field.

3.7.3.3.5. Date-Driven Data

Many data items are related to events that occur on a

particular date, such as transactions. Also, many data

series are based on measurements or data that forms a

time series of information.

In these cases the primary key of the data record may

consist of main key and a date. For example, the primary

key of a transaction may be the account number and the

date.

In cases where multiple events can occur on a single day,

a different arrangement, such as a unique transaction

number, can be used to identify the record.

Histories may also be kept of data that is changed within

the database.

For example, the sum insured value of an insurance

policy may be stored in a data-driven table, using the

policy number and the effective date as the primary key.

This would enable each different value, and the date that

it applied from, to be stored as a separate record.

A history record may be manually entered when a

change to a data item occurs, or in other cases the main

record is modified and the history record is automatically

generated based on the change.

Histories are used to re-produce calculations that applied

at previous points in time, such as re-printing a statement

for a previous period.

Histories may be stored of data that is kept for output or

record-keeping purposes only, such as names and

111

addresses, but history particularly applies to data items

that are used in processing.

Date-driven data is also used when a calculation covers a

period of time.

For example, if the sum insured value of an insurance

policy changed mid-way through a period, the premium

for the period may be calculated in two parts, using the

initial sum-insured for the first part of the period and the

updated sum-insured for the second part of the period.

In some cases, changes to a main data record are

recorded by storing multiple copies of the entire data

record.

In other cases each data item that is stored with a history

is split into an individual table. This can be implemented

by creating a primary key in the history record that is

composed of the primary key of the main record, and the

effective date of the data.

3.7.3.3.6. Attributes and Separate Fields

Data structures can be simpler and more flexible where

different data items are identified by attribute fields,

rather than being stored in separate data items.

For example, the following table may record data

samples within a meteorological system.

 Location Date Temperature Pressure

 Humidity

 123456 1/1/80 1.23 31.2

 234.21

112

However, an alternative implementation may be to store

each data item in a separate record, and identify the data

item using a separate attribute field, rather than by a field

name.

This could be implemented in the following way

 Location Date Type Value

 123456 1/1/80 TEMPRETURE 1.23

 123456 1/1/80 PRESSURE 31.2

 123456 1/1/80 HUMIDITY 234.21

New attributes, such as “MIN_TEMPRETURE”, could

be added without changing the database structure or

program code.

Data entry and display based on this model would not

need to be updated. However, screen entry or reporting

that displayed several values as separate fields may need

to be modified.

In this example, there would be no restriction on each

location recording the same attributes, and a larger set of

attributes could be defined with a varying sub-set of

attributes recorded for different sets of data.

Also, the program code may be simpler and more

general, as the processing would involve a “location”,

“date”, “attribute” and “value”, rather than specific

information related to the samples themselves.

When a large number of attributes are stored, this

approach may significantly simplify the code. In the case

of a small number of attributes, this method allows

general routines and processing to be used in place of

separate field-specific code.

This code could also be applied to other data areas within

the system that could be recorded using a similar

approach.

113

Records stored in the second format could be processed

by general system functions that performed processes

such as subtotalling and averaging.

Disadvantages with the second format include the larger

number of individual records, the possibility of

synchronisation problems when a matching set of records

is not found, and the greater difficulty in translating the

data records into a single screen or report layout that

contained all the information for one set of values.

3.7.3.3.7. Timestamps

A timestamp is a field containing a date, time and

possibly other information such as a user logon and

program name.

Timestamps may be stored as data items in a record to

identify the conditions under which a record was created,

and the details of when it was last changed.

Timestamps can be used for debugging and

administrative purposes, such as reconciling accounts,

tracing data problems, and re-establishing a sequence of

events when information is unavailable or conflicting.

3.7.3.4. Data Access

3.7.3.4.1. Query Languages

Some database management systems support query

languages.

These languages allow groups of records to be selected

for retrieval or updating.

114

Query languages are simple and flexible.

Query languages are generally declarative, not

procedural languages. Although the language may

contain statements that are executed in sequence, the

actual selection of records in based on a definition

statement, rather than a set of steps.

The use of a query language allows many of the details

of the database implementation to become transparent to

the calling program, such as the indexes defined in the

data base, the actual collection of fields in a table, and so

on.

Fields can be added to tables without affecting a query

that selected other existing fields, and indexes can be

added to increase access speed without requiring a

change in the query definition.

In theory a database system could be replaced with an

alternative system that supports the same query

language, such as when data volumes grow substantially

and an alternative database management system is

required.

However, there are also disadvantages with query

languages

The major disadvantage relates to performance.

As the query language is a full text-based language, there

may be a significant overhead involved in compiling the

query into an internal format, determining which indexes

to use for the operation, and performing the actual

process.

This delay may be reduced in some cases by using a pre-

compiled query, however this is still likely to be slower

that a direct subroutine call to a database function.

115

This delay may be a particular issue for algorithms that

involve a large number of individual random record

searches.

3.7.3.4.2. Index-Based Access

Some database management systems support direct

record searches based on indexes. This may involve

selecting a table and an index, creating a primary key and

performing the search.

This approach is less flexible than using a query

language. The structure of the indexes must be included

in the code, and the code may be more complex and less

portable.

However, due to the lower internal overhead involved in

a direct index search, the performance of index-based

operations may be substantially faster than data queries.

3.7.3.4.3. User Interfaces

Many database management systems include a direct

user interface. This may allow data to be direct edited,

and may support ad-hoc queries, reporting and data

updates.

Queries may be performed using a query language, or

using a set of menu-driven functions and report options.

Some systems also include an internal macro language

that can be used to perform complex operations,

including developing complete applications.

116

3.8. Numeric Calculations

3.8.1. Numeric Data Types

Many languages support several different numeric data

types.

Data types vary in the amount of memory space used, the

speed of calculations, and the precision and range of

numbers that can be stored.

Integer data types record whole numbers only.

Floating point variables record a number of digits of

precision, along with a separate value to indicate the

magnitude of the number.

Integer and floating point data types are widely used.

Calculations with these data types may be implemented

directly as hardware instructions.

Fixed point data types record a fixed number of digits

before and a fixed number of digits after the decimal

point.

Scaled data types record a fixed number of digits, and

may use a fixed or variable decimal point position.

Arbitrary precision variables have a range of precision

that is variable, with a large upper limit. The precision

may be selected when the variable is defined, or may be

automatically selected during calculations.

Cobol uses an unusual format where a variable is defined

with fixed set of character positions, and each position

can be specified as alphabetic, alphanumeric, or numeric

117

3.8.2. Numeric Data Storage

Integers are generally stored as binary numbers.

Floating point variables store the mantissa and exponent

of the value separately. For example, the number

1230000 is represented as 1.23 x 106 in scientific

notation, and 0.00456 would be 4.56 x 10-3.

In the first example, a value representing the 123 may be

stored in one part of the variable, while a value

representing the 6 may be stored in a separate part of the

variable. Actual details vary with the storage format

used.

The precision of the format is the number of digits of

accuracy that are recorded, while the range specifies the

difference between the smallest and largest values that

can be stored.

This format is based on the scientific notation model,

where large and small numbers are recorded with a

separate mantissa and exponent.

For example

 6254000000 = 6.254 x 109

 0.00000873 = 8.73 x 10-6

Examples of integer data types:

 Storage size Number range

 2 bytes -32,768 to +32,767

 4 bytes -2,147,483,648 to

+2,147,483,647

118

Examples of floating point data types:

 Storage Size Precision Range

 4 bytes approx 7 digits approx

10-45 to 1038

 8 bytes approx 15 digits approx

10-324 to 10308

Fixed point numbers may also be stored as binary

numbers, with the position of the decimal point taken

into account when calculations are performed.

BCD (Binary Coded Decimal) numbers are stored with

each decimal digit recorded as a separate 4-bit binary

code.

Other numeric types may be stored as text strings of

digits, or as structured binary blocks containing sections

for the number itself and a scale if necessary.

3.8.3. Memory Usage and Execution Speed

Generally calculations with integers are the fastest

numeric calculations, and integers use the least amount

of memory space.

Floating point numbers may also execute quickly when

the calculations are implemented as hardware

instructions.

Both integers and floating point numbers may be

available in several formats, with the range and precision

of the data type related to the amount of memory storage

used.

When the calculations for a numeric data type are

implemented internally as subroutines, the performance

119

may be significantly slower than similar operations using

hardware-supported data types.

3.8.4. Numeric Operators

Although the symbols and words vary, most

programming languages directly support the basic

arithmetic operations:

 + addition

- subtraction

* multiplication

/ division

 mod modulus

^ Exponentiation, yx

When calculations are performed with integer values, the

fractional part is usually truncated, so that only the

whole-number part of the result is retained.

Languages that are orientated towards numeric

processing may include other numeric operators, such as

operators for matrix multiplication, operations with

complex numbers, etc.

3.8.5. Modulus

The modulus operator is used with integer arithmetic to

capture the fractional part of the result.

The modulus is the difference between the numerator in

a division operation, and the value that the numerator

would be if the division equalled the exact integer result.

For example, 13 divided by 5 equals 2.6. Truncating this

result to produce an integer value leads to a result of 2.

120

However, 10 divided by 5 is exactly equal to 2.

In this example, the modulus would be equal to the

difference between 13 and 10, or in this case 3.

This could be expressed as

 13 mod 5 = 3

An equivalent calculation of “a MOD b” is “a – b * int(a

/ b)”, where the “int” operation produces the truncated

integer result of the division.

This operator may be useful in mapping a large number

range onto an overlapping smaller range. For example, if

“total-lines” was the total number of lines in a long

document, then the following result would occur:

page-number = total-lines / lines-per-page (integer

division)

line-on-page = total-lines Mod lines-per-page

In this example, the “total lines” value increases through

the document, while the “line-on-page” value would

reset to zero as it crossed over into each new page.

3.8.6. Rounding Error

Some numbers cannot be represented as a finite series of

digits. One divided by three, for example, is ⅓ when

expressed as a fraction, but is

 0.333333333….

when expressed as a decimal. Programming languages

do not generally support exact fractions, apart from some

specialist mathematical packages.

121

In this case, the 3 after the decimal point repeats forever,

but the precision of the stored number is limited. One-

third plus two thirds equals one. Using numbers with 15

digits of precision, however, the result would be

0.333333333333333

 + 0.666666666666666

 = 0.999999999999999

If a check was done in the program code to see whether

the result was equal to 1, this test would return false, not

true, as the number stored is 0.999999999999999, which

is different from 1.000000000000000.

The maximum rounding error that can occur in a number

is equal to one-half of the smallest value represented in

the mantissa.

For example, with 15 digits of precision, the maximum

rounding error would be a value of 5 in the sixteenth

place.

During a series of additions and subtractions, the

maximum total error would be equal to the number of

operations, multiplied by a value of one-half of the

smallest mantissa value.

In the case of “n” addition or subtraction operations, the

number of significant figures lost is equal to log10(5 * n)

When multiplications and divisions are performed, the

maximum error would increase in the order of one-half

of the smallest mantissa value raised to the power of the

number of operations.

Rounding problems can be reduced if some of the

following steps are taken.

• A number storage format with an adequate

number of digits of precision is used.

122

• Chaining of calculations from one result to the

next is avoided, and results are calculated

independently from input figures where possible.

• The full level of precision is carried through all

intermediate results, and rounding only occurs

for printing, display, data storage, or when the

figure represents an actual number, such as

whole cents.

• Calculations are structured to avoid subtracting

similar numbers. For example, “3655.434224 –

 3655.434120 = 0.000104”, and ten digits of

precision drops to three digits of precision.

When calculations have been performed with numbers,

comparing values directly may not generate the expected

results.

This issue can be addressed by comparing the numbers

against a small difference tolerance.

For example

 If (absolute_value(num1 – num2) <

0.000001 then

Errors in numeric calculations may also appear due to

processing issues that are not directly related to the

storage precision.

For example, one system may round numbers to two

decimal places before storing the data in a database,

while another system may display and print numbers to

two decimal places but store the numbers with a full

precision.

In these cases, comparing totals of the two lists may

result in rounding errors in the third decimal place, rather

than the last significant digit.

123

3.8.7. Invalid Operations

If a calculation is attempted that would produce a result

that is larger than the maximum value that a data type

can store, then an overflow error may occur.

Likewise, if the result would be less than the minimum

size for the data type, but greater than zero, then an

underflow error may occur.

Dividing a number by zero is an undefined mathematical

operation, and attempting to divide a number by zero

may result in a divide-by-zero error.

The handling of invalid numeric operations varies with

different programming languages, but frequently a

program termination will result if the error is not trapped

by an error-handling routine within the code.

These problems can be reduced by checking that the

denominator is non-zero before performing a division or

modulus, and by using a data type that has an adequate

range for the calculation being performed.

3.8.8. Signed & Unsigned Arithmetic

In some languages numeric data types can be defined as

either signed or unsigned data types.

Using unsigned data types allows a wider range of

numbers to be stored, however this is a minor difference

in comparison to the variation between different data

types.

Mixing signed and unsigned numbers in expressions can

occasionally lead to unexpected results, especially in

cases where values such as -1 are used to represent

markers such as the end of a list.

124

For example, if a negative value was used in an unsigned

comparision, it would be treated as a large positive value,

as negative values are the equivalent bit-patterns to the

largest half of the unsigned number range.

In the case of a 2 byte integer, the range of numbers

would be as shown below.

Data Type Range

 2 bytes signed -32,768 to

+32,767

 2 bytes unsigned 0 to +65536

3.8.9. Conversion between Numeric Types

When numeric variables of different types are mixed,

some languages automatically convert the types, other

languages allow conversion with an operator or function,

and other languages do not allow conversions.

If two items in an arithmetic expression have different

numeric types, the value with the lower level of precision

may be converted to the same level of precision as the

other value before the calculation is performed.

However, the detail of data type promotion varies with

each language.

3.8.10. String & Numeric conversion

Numeric data types cannot be displayed directly and

must be converted to text strings of digits before they can

be printed or displayed.

Also, Information derived from screen entry or text

upload files may be in a text format, and must be

125

converted to a numeric data type before calculations can

be performed.

Languages generally include operators or subroutines for

converting between numeric data types and strings.

This conversion is a relatively slow operation, and

performance problems may be reduced if the number of

conversions is kept to a minimum.

3.8.11. Significant Figures

The number of significant figures in a number is the

number of digits that contain information. For example,

the numbers 5023000000 and 0.0000005023 both

contain four significant digits. The figures “5023”

specify information concerning the number, while the

zeros specify the number’s size.

Measurements may be recorded with a fixed number of

significant figures, rather than a fixed number of decimal

places. For example, a measurement that is accurate to 1

part in 1000 would be accurate to three significant digits.

Rounding can be performed to a fixed number of decimal

places, or a fixed number of significant figures.

When a wide range of numbers are displayed in a narrow

space, a floating decimal point can be used with a fixed

number of significant figures. For example, the numbers

“ 3204.8” and “ 3.7655” both contain five significant

digits.

3.8.12. Number Systems

Numbers are used for several purposes with programs.

126

One use is to record codes, such as a number that

represents a letter, or a number that represents a selection

from a list of options.

Numbers are also used to represent a quantity of items.

The decimal number 12, the roman numeral XII, and the

binary number 1100 all represent the same number, and

would represent the same quantity of items.

3.8.12.1. Roman Numerals

In the Roman number system, major numbers are

represented by different symbols. I is 1, V is 5, X is 10, L

is 50, C is 100 and so on.

Numerals are added together to form other numbers. If a

lower value appears to the left of another value, it is

added to the main value, otherwise it is subtracted.

The first ten roman numerals are

 I 1

 II 2

 III 3

 IV 4 five minus one

 V 5

 VI 6 five plus one

 VII 7 five plus two

 VIII 8 five plus three

 IX 9 ten minus one

 X 10

Although this system can record numbers up to large

values, it is difficult to perform calculations with

numbers using this system.

127

3.8.12.2. Arabic Number Systems

An Arabic number system uses a fixed set of symbols.

Each position within a number contains one of the

symbols.

The value of each position increases by a multiple of the

base of the number system, moving from the right-most

position to the left.

The value of each position in a particular number is

given by the value of the position itself, multiplied by the

value of the symbol in that position.

For example

 31504 = 3 x 104 = 3 x

10000

 + 1 x 103 + 1 x

1000

 + 5 x 102 + 5 x 100

 + 0 x 101 + 0 x 10

 + 4 x 100 + 4 x 1

The decimal number system is an Arabic number system

with a base of 10. The digit symbols are the standard

digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Other bases can be used for alternative number systems.

For example, in a number system with a base of three,

the number 21302 would be equivalent to the number

218 in decimal.

 213023 = 2 x 34 =

2 x 8110

+ 1 x 33

 + 1 x 2710

 + 3 x 32

 + 3 x 910

 + 0 x 31

 + 0 x 310

128

 + 2 x 30

 + 2 x 1

 = 21810

In this notation, the subscript represents the base of the

number. The base-three representation 21302 and the

base-ten representation 218 both represent the same

quantity.

3.8.12.2.1. Binary Number System

The Arabic number system with a base of 2 is the known

as the binary number system. The digits used in each

position are 0 and 1.

In computer hardware, a value is represented electrically

with a value that is either on or off. This value can

represent two states, such as 0 and 1.

Each individual storage item is known as a bit, and

groups of bits are used to store numbers in a binary

number format.

Computer memory is commonly arranged into bytes,

with a separate memory address for each byte. A byte

contains eight bits.

An example of a binary number is

 1011012 = 1 x 25 = 1 x 3210

 + 0 x 24 + 0 x 1610

 + 1 x 23 + 1 x 810

 + 1 x 22 + 1 x 410

 + 1 x 21 + 0 x 210

 + 1 x 20 + 1 x 1

 = 4510

129

In this example, the binary number 101101 is equivalent

to the decimal number 45.

As the base of the binary number system is two, each

position in the number represents a number that is a

multiple of 2 times larger than the position to its right.

The value of a number position is the base raised to the

power of the position, for example, the digit one in the

fourth position from the right in a decimal number has a

value of 103 = 1000. In a binary number, a digit in this

position would have a value of 23 = 8.

3.8.12.2.2. Hexadecimal Numbers

The hexadecimal number system is the Arabic number

system that uses a base of 16.

This is used as a shorthand way of writing binary

numbers. As the base of 16 is a direct power of two, each

hexadecimal digit directly corresponds to four binary

digits.

Hexadecimal numbers are used for writing constants in

code that represent a pattern of individual bits rather than

a number, such as a set of options within a bitmap.

Due to the fact that the base of the number system is 16,

there are 16 possible symbols in each position in the

number.

As there are only ten standard digit symbols, letters are

also used.

The characters used in a hexadecimal number are 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The characters A

through to F have the values 10 through to 15.

For example,

130

 8D3F16 = 8 x 163 = 8 x

409610

 + D x 162 + 1310 x

25610

 + 3 x 161 + 3 x

1610

 + F x 160 + 1510 x 1

 =

3615910

 =

10001101001111112

There is a direct correspondence between each

hexadecimal digit and each group of four binary digits.

For example,
 8 D 3 F

 = 1000 1101 0011 1111

In this example, the second group of bits has the value

1101, which corresponds to 13 in decimal and D in

hexadecimal.

The following table includes the first eight powers of two

and some other numbers, represented in several different

bases.

131

 Hexadecimal Binary Decimal

 Value

 01 00000001 1

 20

 02 00000010 2

 21

 04 00000100 4

 22

 08 00001000 8

 23

 10 00010000 16

 24

 20 00100000 32

 25

 40 01000000 64

 26

 80 10000000 128

 27

 0F 00001111 15

 F0 11110000 240

 FF 11111111 255

132

3.9. System Security

System security is implemented in most large systems to

prevent the theft of programs and data, to prevent the

unauthorised use of systems, and to reduce the chances

of accidental or deliberate damage to data.

3.9.1. Access Control

Access control is implemented at the operating system

level, which applies to running programs and accessing

data. Similar approaches are used within application

programs, and within databases.

Access control generally involves defining the type of

access available for each function. This may be based on

access levels, or on profiles which define the access type

for each group of functions.

Types of access may include

• No access

• View-only access

• View and Update access

• Delete access

• Run read-only programs

• Run update programs

Access can also be limited to certain groups of records,

such the products developed within a particular division.

This is less commonly done, but can be used when a

common processing system is used by several

independent organisations.

133

3.9.2. User Identification and Passwords

Logging into a system generally involves a user ID and a

password. The user ID identifies the user to the system,

and may be composed of the user’s initials or some other

code.

Passwords may be randomly generated, either initially or

permanently. Passwords may be restricted to prevent the

use of common passwords such as personal names and

account numbers.

The may include requiring a minimum number of

characters, and possibly at least one digit and one

alphabetic character in the password.

Passwords may expire after a certain time period, after

which they must be changed, possibly to a new password

that has not been previously used.

Passwords may be encrypted before being stored in a

database or data file, to prevent the text from being

viewed using an external program.

A logon session may terminate automatically after a

period of time without activity, to reduce the chance of

access being gained through an unattended terminal that

is still logged in.

3.9.3. Encryption of Data

Data can be encrypted. This involves changing the data

into another format so that the information cannot be

viewed or identified.

Encryption is not widely used in standard systems.

However, encryption is used in high-security data

transfers, and in general-use facilities such as network

systems and digital mobile telephone communications.

134

Various algorithms are available for encryption. These

range from simple techniques to complex calculations.

One simple approach is to map each input character to a

different output character. This is a simple method,

however it could be used for storing small items such as

passwords.

For example, input data could be translated to output

data using a formula or a lookup table.

This would be a one-to-one mapping. A table would

contain 256 entries for one byte of data, and could be

used to encrypt text or binary data. The following table

shows the first few entries in a mapping table.

 Input Output

 Character Character

 A J

 B &

 C D

 D E

 0 9

 1)

 2 <

 * :

 ! “

 ? 3

Data would be unencrypted by using the table in reverse.

3.9.4. Individual Files

Small individual files, such as a data file created by a

software tool or a configuration file, may have a

password embedded within the file.

The software tool would generally prompt for the

password when an attempt was made to open the file,

135

and would disallow access unless the correct password

was entered.

3.9.5. External Access

Data can generally be accessed in other, often simpler,

ways that are external to an application. This includes

copying files and accessing the data at another location,

or accessing databases directly through a database query

interface.

These other methods would also be addressed in a

security arrangement. For example, access to a database

query interface may be limited to read-only access, with

the table storing the user accounts and passwords having

no access.

136

3.10. Speed & Efficiency

3.10.1. Execution Speed

3.10.1.1. Accessing data

A significant proportion of processing time is involved in

accessing data. This may include searching lists locate a

data item, or executing a search function within a data

structure.

3.10.1.1.1. Access Methods

The fundamental access methods include the following.

3.10.1.1.1.1. Direct Access

Direct access involves using an individual data variable

or indexing an array element. This is the fastest way to

access data.

In a fully compiled program, both these operations

require only a few machine code instructions.

In contrast, a search of a list of 1,000 items may involve

thousands of machine code operations.

3.10.1.1.1.2. Semi-Direct Access

Data can be accessed directly using small integer values

as array indexes.

137

However, data cannot be accessed directly by using a

string, floating point number or wide-ranging integer

value to refer to the data item.

Data stored using strings and other keys can be accessed

in several steps by using a data structure such as a hash

table.

Access time to a hash table entry is slower than access to

an array, as the hash function value must be calculated.

However, this is a fixed delay and is not affected by the

number of items stored in the table.

Access times can slow as a hash table becomes full.

3.10.1.1.1.3. Binary Search

A binary search can locate an item in a sorted array in an

average of approximately log2(n)-1 comparisons.

This is generally the simplest and fastest way to locate

data using a string reference.

Unless the data size is extremely large, such as over one

million array elements, then the overhead in calculating a

hash table key is likely to be higher than the number of

comparisons involved in a binary search.

A binary search is suitable for a static list that has been

sorted.

However, if items are added to the list or deleted from

the list, this approach may not be practical. Either a

complete re-sort would be required, or an insertion into a

sorted list could be used which would involve an n/2

average update time.

In these cases, a hash table or a self-balancing tree could

be used.

138

3.10.1.1.1.4. Exhaustive Search

An exhaustive search involves simply scanning the list

from the first item onwards until the data item is located.

This takes an average of n/2 comparisons to locate an

item.

3.10.1.1.1.5. Access Method Comparison

The average number of comparisons involved in locating

a random element is listed in the table below.

 Entries Direct Index Binary Search Full

Scan

 (sorted)

 (unsorted)

 100 1 5.6 50

 1,000 1 9.0 500

 10,000 1 12.3

 5,000

 100,000 1 15.6

 50,000

 1,000,000 1 18.9

 500,000

 10,000,000 1 22.3

 5,000,000

The direct index method can be used when the item is

referenced by an index number. When the item is

referenced by a string key, an alternative method can be

used.

The hash table access is not shown. However, it has a

fixed access overheard that could be of the approximate

order of the 20-comparison binary search operation.

139

The binary search method can only be used with a sorted

list. Sorting is a slow operation. This method would be

suitable for data that is read at the beginning of program

execution and can be sorted once.

The full search is extremely slow and would not be

practical for lists of more than a few hundred items

where repeated scans were involved.

3.10.1.1.2. Tags

Searching by string values can be avoided in some cases

by assigning temporary numeric tags to data items for

internal processing.

For example, the primary and foreign keys of database

records may be based on string fields, or widely-ranging

numeric codes.

When values are read into arrays for internal

calculations, each entry could be assigned a small

number, such as the array index, as a tag.

Other data structures would then use the tag to refer to

the data, rather than the string key. This would allow that

data to be accessed directly using a direct array index.

3.10.1.1.3. Indirect Addressing

In cases where a data item cannot be accessed directly

using a numeric index or a binary search on a sorted

array, an indirect accessing method may be able to be

used.

This approach would apply when there was a need to

search a table by more than one field, or when a numeric

140

index value did not map directly to an array entry, such

as an index into a compacted table.

This method involves defining an additional array that is

indexed by the search item, and contains an entry that

specifies the index into the main array.

In the case of an indirect index, such as a mapping into a

compacted table, the array would be indexed by the

original index and would contain the index value for the

compacted table.

In the case of a string search, the array would be sorted

by the string field. This would be searched using a binary

search method and would contain the index into the main

table.

This approach could also be used when the main table

contained large blocks of data, and moving the data

during a sort operation would be a slow process.

3.10.1.1.4. Sublists

In cases where searching lists is unavoidable, the search

time may be reduced if the data is broken into sub-

sections.

This is effectively a partial sort of the data.

141

For example, a set of data may contain ten samples from

ten locations, for a total of 100 data items. Searching this

data would involve an average of 50 comparisons.

However, if the samples were allocated to individual

locations, then searching the locations would take an

average of 5 comparisons, and searching the samples

would also involve an average of five comparisons, for a

total of 10 average comparisons.

Additionally, although one of the other approaches such

as direct indexing may not be practical for the full data

set, it may be applicable to one of the stages in the sub-

list structure.

3.10.1.1.5. Keys

Where data is located by searching for several different

data items, the data items can be combined into a single

text key.

This key can then be used to locate the data using one of

the string index methods, such as a hash table or a binary

search on a sorted array.

3.10.1.1.6. Multiple Array Indexes

142

Where data is identified by several independent numeric

items, a multiple dimension array can be used to store the

data, with each numeric item being used to index one of

the array dimensions.

This allows for direct indexing, however a large volume

of memory may be used. The memory consumed is equal

to the size of the array items multiplied by the size of

each of the dimensions. For example, if the first

dimension covered a range of 3000 values, the second

dimension covered 80 values and the third dimension

covered 500 values, then the array would contain 120

million entries.

This problem may be reduced by compacting the table to

remove blank entries and using a separate array to

indirectly index the main table, or by using numeric

values for some dimensions and locating other values by

searching the data.

3.10.1.1.7. Caching

Caching is used to store data temporarily for faster

access.

This is used in two contexts. Caching may be used to

store data that has been retrieved from a slower access

storage, such as storing data in memory that has been

retrieved from a database or disk file.

Also, caching can be used to store previously calculated

values that may be used in further processing. This

particularly applies to calculations that required reading

data from disk in order to calculate the result.

A structured set of results can be stored in an array.

Where a large number of different types of data are

stored, a structure such as a hash table can be used.

143

Caching of calculated results can also be stored in

temporary databases.

Where input figures have changed, the cached results

will not longer be valid and should be discarded,

otherwise incorrect values may be used in other

calculations.

3.10.1.2. Avoiding Execution

Execution speed can be increased by avoiding executing

statements unnecessarily.

3.10.1.2.1. Moving code

Moving code inside “if” statements and outside loops

may increase execution speed.

If the results of a statement are only used in certain

circumstances, then placing an “if” statement around the

code may reduce the number of times that the code is

executed.

This could also involve moving the statement inside an

existing “if” statement.

Moving code outside a loop has a similar effect. If a

statement returns the same result for each iteration of the

loop, then the code could be moved outside the loop to a

previous position.

This would result in the statement being executed only

once, rather than every time that the loop was repeated.

3.10.1.2.2. Repeated Calculation

In some cases a calculation is repeated but it cannot be

moved outside a loop.

144

This can occur with nested loops for example.

Where a statement within the inner loop refers to the

inner loop variable, it cannot be moved outside the inner

loop as its value may be different with each iteration of

the loop.

However, if this statement does not refer to the outer

loop variable, then the entire cycle of values will be

repeated for each iteration of the outer loop.

This situation can be addressed by including a separate

loop before the nested loop, to cycle through the inner

loop once and store the results of the statement in a

temporary array.

These array values could then be used in the inner nested

loop.

This may have significant impact on the execution time

when the statement includes a subroutine call to a slow

function and the outer loop is executed a large number of

times.

3.10.1.3. Data types

3.10.1.3.1. Strings

Processing with strings is significantly slower than

processing with numeric variables.

Copying strings from one variable to another, and

performing string operations may involve memory

allocations and copying individual characters within the

string

In contrast, setting a numeric value can be done with a

single instruction.

145

In general execution speed may be significantly

increased if numeric values are used for internal

processing rather than string codes.

For example, dates, tags to identify records, flags and

processing options could all be represented using

numeric variables rather than string codes.

Numeric data and dates read into a system may be in a

string format, in which case the data can be converted to

a numeric data type for storage and processing.

3.10.1.3.2. Numeric Data

Integer data types generally provide the fastest execution

speed.

Floating point number calculations may also be fast, as

hardware generally supports floating point calculations

directly.

However, many languages support other numeric data

types that may be quite slow, if the arithmetic is

implemented internally as a set of subroutines.

The numeric data types that are compiled into direct

hardware instructions varies with the language, hardware

platform and language implementation.

3.10.1.4. Algorithms

The choice of algorithm can have a significant impact on

execution speed. In cases where this available memory is

restricted, the choice of algorithm can also impact on the

volume of memory used for data storage.

146

In some cases, alternative algorithms to produce the

same result may differ in execution speed by many

orders of magnitude.

Sorting is an example of this. Sorting an array of one

million items using the bubble sort algorithm would

involve approximately one trillion operations, while

using the quicksort algorithm may involve approximately

20 million operations.

In many cases several different algorithms can be used to

calculate a particular result.

Algorithms that scan input data without backtracking

may be faster than algorithms that involve backtracking.

For example, a test searching method that used a finite

state automaton to scan the text in a single pass may be

faster than an alternative algorithm that involved

backtracking.

Some algorithms make a single pass through the input

data, while others involve multiple passes.

If the complete processes can be performed during a

single pass then faster execution may be achieved,

particularly when database accesses are involved.

However, in some cases a process with several simple

passes may be faster than a process that uses a single

complex pass.

3.10.1.5. Run-time processing

In some cases, a structure can be compiled or translated

into another structure that can be processed more

quickly.

For example, a text formula may specify a particular

calculation. Processing this formula may involve

identifying the individual elements within the formula,

147

parsing the string to identify brackets and the order of

operators, and finally calculating the result.

If the calculation will be applied to many data items, then

the expression can be translated into a postfix expression

and stored in an internal numeric code format.

This would enable the expression to be directly executed

using a stack. This would be a relatively fast operation

and would be significantly faster than calculating the

original expression for each data item.

This process could be extended to the case of a macro

language using variables and control flow, by generating

internal intermediate code and executing the code using a

simple loop and a stack.

Another example of separate run-time processing would

involve algorithms that generate finite state automatons

from patterns such as language grammars or text search

patterns.

Once the finite state automaton has been generated, it

can be used to process the input at a high rate, as a single

transition is performed for each input character and no

backtracking is involved.

3.10.1.6. Complex Code

When a section of code has been subject to a large

number of changes and additions, the processing can

become very complex. This may involved multiple

nested loops, re-scanning of data structures and complex

control flow. These changes may lead to a significant

drop in execution speed.

In these cases, re-writing the code and changing the data

structures may lead to a drastic reduction in complexity

and an increase in execution speed

148

3.10.1.7. Numeric Processing

Numeric processing is generally faster when the data is

loaded into program arrays before the calculation

commences. Data may be loaded from databases, data

files, or more complex program data structures.

Execution speed may be increased if calculations are not

repeated multiple times. This situation can also arise

within expressions.

For example, an expression of the form “x = a * b * c”

may appear within an inner processing loop. However, if

part of the expression does not change within the inner

loop, such as the “b * c” component, then this calculation

can be moved outside the loop.

This may lead to an expression of “d = b * c” in an outer

loop, and “x = a * d” in the inner loop.

Where a calculation within an inner loop is effected by

the inner loop but not the outer loop, then a separate loop

can be added before the main loops to generate the set of

results once, and store then in a temporary array for use

within the inner loop.

Special cases within the structure of the calculations and

data may enable the number of calculations to be

reduced.

For example, if a matrix is triangular, so that the data

values are symmetrical around the diagonal, then only

the data on one side of the diagonal needs to be

calculated.

As another example, some parts of the calculation may

be able to be performed using integers rather than

floating point operations. However, the conversion time

between the integer and floating point formats would

also affect the difference in execution times.

149

If the data is likely to contain a large number of values

equal to zero or one, then these input values can be

checked before performing unnecessary multiplications

or additions.

Integer operations that involve multiplications or

divisions by powers of two can be performed using bit

shifts instead of full arithmetic operations.

An integer data item can be multiplied by a power of two

by shifting the bits to the left, by a number of places that

is equal to the exponent of the multiplier.

In languages that support pointer arithmetic, stepping

through an array by incrementing a pointer may be faster

than using a loop with an array index.

In cases where an extremely large number of calculations

are performed on a set of numeric data, several steps may

lead to slight performance increases.

Accessing several single-dimensional arrays may be

slightly faster than accessing a multiple dimensional

array, as one less calculation is involved in locating an

element position.

When multiple dimensional arrays are used, access may

be slightly faster if the array dimensions sizes are powers

of two. This is due to the fact that the multiplication

required to locate an element position can be performed

using a bit shift, which may be faster than a full

multiplication.

3.10.1.8. Language and Execution Environment

In extreme cases an increase in execution speed may

involve changing the program to a different

programming language or development environment.

150

Fully compiled code that produces an executable file is

generally the fastest way to execute a program.

Some languages and development platforms are based on

interpreters or use partial compilation and a run-time

interpreter to execute the code.

These approaches may be substantially slower than using

a full compiler.

Compilers often implement optimising features to

increase execution speed by performing actions such as

converting multiplication by powers of two into bit

shifts, automatically moving code outside loops, and

generating specific machine code instructions for

specific situations.

The level and type of optimisation may be selectable

when a compilation is performed.

3.10.1.9. Database Access

Processes that are structured to avoid re-reading database

records will generally execute more quickly than

processes that read records more than once.

Where a record would be read many times during a

process, the record can be read once and stored in a

record buffer or program variables.

When a one-to-many link is being processed, if the child

records are read in the order of the parent record key, not

the child record key, then each parent record would only

need to be read once.

Processing the child records in the order of the child

record key may require re-reading a parent record for

every child record.

151

Selecting a processing order that requires only a single

pass through the data would generally result in faster

execution that an alternative process that used multiple

passes through the data, or that re-read records while

processing one section of the data.

3.10.1.10. Redundant Code

In code that has been heavily modified, there may be

sections of code that calculate a result or perform

processing that is never used.

Additionally, some results may be produced and then

overwritten at a later stage by other figures, without the

original results having been accessed.

Removing redundant code can simplify the code and

increase execution speed.

3.10.1.11. Bugs

Performance problems may sometimes be due to bugs. A

bug may not affect the results of a process, but it may

result in a database record being re-read multiple times, a

loop executing a larger number of times than is

necessary, cached data being ignored, or some other

problem.

Using an execution profiler or a debugger may identify

performance problems in unexpected sections of code

due to bugs.

3.10.1.12. Special Cases

In some calculations or processes, there is a particular

process than could be done more quickly using an

alternative method.

152

In these cases, the alternative approach may also be

included, and used for the particular cases that it applies

to.

For example, a subroutine to calculate xy could

implement a standard numerical method to calculate the

result.

However, this may be a slow calculation, and in a

particular application it may be the case that the value of

“y” is often 2, to calculate the square of a number.

In this case the value of “y” could be checked in the

subroutine, and if it is equal to 2 then a simple

multiplication of “y * y” could be used in place of the

general calculation.

Another example concerns sorting. In a complex

application it may be the case that a list is sometimes

sorted when it is already in a sorted order.

The sort routine could check for the special case that the

input data was already sorted, in which case the full

sorting process would not be necessary.

Special cases may also apply to caching, rather than a

particular figure or set of data. For example, a subroutine

to return the next item in a list after a specified position

could retain the value of the last position returned, as in

many cases a simple scan of the list would be done and

this would avoid the need to re-establish the starting

position.

3.10.1.13. Performance Bottlenecks

In some cases the majority of the processing time may be

spent in a small section of code.

This may occur with nested loops for example. If an

outer loop iterates 1000 times and the inner loop also

153

iterates 1000 times, then the code within the inner loop

will be executed one million times.

Indirect nested loops can occur when a subroutine is

called from within a loop, and the subroutine itself

contains a loop.

This would initially appear to be two single-level loops,

however because the subroutine is called from within

one of the loops, the number of times that the code

would be executed would be the product of the number

of loop iterations, not the sum.

In some development environments an execution

profiling program can be used to determine the

proportion of execution time that is spent within each

section of the code.

In some cases a nested loop may be avoided by changing

the order of nesting.

For example, if an array is scanned using a loop and

another array is scanned within that loop, if the first array

can be directly accessed using an array index, then a

nested loop could be avoided by scanning the second

array first, and using the direct index to access the first

array.

Also, sub-lists could be expanded to provide a single

complete set of data combinations, rather than including

a main set of data and multiple sub-lists of related

information.

3.10.2. Memory Usage

3.10.2.1. Data Usage

3.10.2.1.1. Individual variables

154

Numeric variables use less memory space than strings.

Where possible, replacing string values in tables and

arrays with a number code may reduce memory usage.

Integer numeric variables generally occupy less memory

space than other numeric data types.

Also, floating point data types may be available in

several levels of precision. Changing an array of double-

precision floating point values to single-precision

variables may halve the memory usage, although this

would only be practical when the single-precision format

contained an adequate number of digits of precision for

the data being stored.

Data types such as dates may be able to be stored as

numeric variables rather than using a different internal

format that consumes more memory.

3.10.2.1.2. Bitmaps

Where several Boolean flags are used, these can be

stored as individual bits using a bitmap method, rather

than using a full integer variable for each individual flag.

In some applications, such as graphics processing,

individual data items may not use a number of bits that is

a multiple of a standard eight-bit byte.

For example, eight separate values can be represented

using a set of three bits. If a large volume of data

consisted of numbers with three-bit pattens, then several

data items could be stored within a particular byte.

This would involve a calculation to determine the

location of a three-bit value within a block of data, and

the use of bitmaps to extract the three-bit code from an

eight-bit data item.

155

3.10.2.1.3. Compacting Structures

In cases where structures contain duplicated entries or

blank entries, the structure may be able to be compacted.

This can be done by replacing the multiple duplicated

entries with a single entry, removing blank entries, and

using a separate array to map the original array indexes

to the index value into the compacted array.

This is an indirect indexing method.

3.10.2.1.4. String tables

In cases where a particular string value may appear

multiple times within a set of data, the strings can be

stored in a separate array, and the entries in the original

data structure can be changed to numeric indexes into the

string table array.

This may also increase processing speed when entries are

moved and copied in the main data structure.

3.10.2.2. Code Space Usage

3.10.2.2.1. Task languages

In some cases a simple language may be able to be

developed that contains instructions relating to the task

being performed.

Statements in this language could then be compiled into

numeric codes and stored as data. At run time, a simple

loop could then process the instructions to execute the

process.

156

For example, in an industrial control application, a set of

instructions for opening valves, reading sensors etc could

be developed. The process control itself could be written

using these instructions, and a small run-time interpreter

could execute the instructions to operate the process.

This is the approach used in central processing units that

use microcode. In this case, the program instructions are

executed by a simple language within the chip itself.

3.10.2.2.2. Table driven code

Table driven code can be used to reduce code volumes in

some applications. An increase in data usage would

occur, however this would generally be less than the

decrease in the memory space used for the program

instructions.

A table driven routine involves storing a list of fixed

values in an array, such as strings for a menu display or

values for a subroutine call, and using a loop of code to

scan the array and call a subroutine for each entry in the

array. This replaces multiple individual lines of code.

157

4. The Craft of Programming

4.1. Programming Languages

4.1.1. Assembler

Machine code is the internal code that the computer’s

processor executes. In provides only basic operations,

such as arithmetic with numbers, moving data between

memory locations, comparing numbers and jumping to

different points in the program based on zero/non-zero

conditions.

Assembly code is the direct representation of machine

code in a readable, text format. Assembler has no syntax

and is simply a sequence of instructions.

Assembly code is the fastest way to implement a

procedure however it has some severe limitations.

Each processor uses a different set of machine code

instructions, so an assembly language program must be

completely re-written to run on a computer that uses a

different internal processor.

Assembler is a very basic language and a large volume

of code must be written to accomplish a particular

function.

Assembly language is sometimes used in controlling

hardware and industrial machine control, and in

applications where speed is critical, for example the

routing of data packets in a high-speed network.

4.1.2. Third Generation Languages

158

Third-generation languages (3GL), refer to a range of

programming languages that are similar in structure and

are in widespread use.

These languages operates at the level of data variables,

subroutines, “if” statements, loops etc.

A large proportion of all programs are written using third

generation languages.

4.1.2.1. Fortran

Fortran and Cobol were the first widely-used

programming languages, with Cobol being used for

business data processing and Fortran for numeric

calculations in engineering and scientific applications.

Fortran is an acronym for “FORmula TRANslator”

Fortran has strong facilities for calculation and working

with numbers, but is less useful for string and text

processing.

4.1.2.2. Basic

Basic was initially designed for teaching Fortran. Basic

is an acronym for “Beginners All Purpose Symbolic

Instruction Code”.

Basic has flexible string handling facilities and

reasonable numeric capabilities.

4.1.2.3. C

C was original developed as a systems-level language

and was associated with the development of the UNIX

operating system.

159

C is fast and powerful, and makes extensive use of

pointers. C is useful for developing complex data

structures and algorithms. However, processing strings in

C is cumbersome.

4.1.2.4. Pascal

Pascal was initially developed for teaching computer

science courses. Pascal is named after the mathematician

Blaise Pascal, who invented the first mechanical

calculating machine of modern times.

Pascal is a highly structured language that has strict type

checking and multiple levels of subroutine and data

variable scope.

4.1.3. Business Orientated Languages

4.1.3.1. Cobol

Cobol operates at a similar level to third-generation

languages, however it is generally grouped separately as

the structure of cobol is quite different from other

languages.

Cobol is an acronym for “COmmon Business Orientated

Language”.

Cobol is designed for data processing, such as

performing calculations and generating reports with large

volumes of data. Vast amounts of cobol code have been

written and are particularly used in banking, insurance

and large data processing environments.

In cobol, data fields are defined as a string of individual

characters, and each position in the variable may be

defined as an alphabetic, alphanumeric or numeric

character.

160

Arithmetic can be performed on numeric items.

Processing is accomplished with procedural statements.

Cobol statements use English-like sentences and cobol

code is easy to read, however a cobol program can fill a

larger volume of text space that an equivalent program in

an alternative language.

Cobol is closely intertwined with mainframe operating

systems and database systems, resulting in efficient

processing of large volumes of data.

4.1.3.2. Fourth Generation Languages (4GL)

Following the increasing complexity of computer

systems in the 1970’s and 80’s, attempts were made to

define new higher-level languages that could be used to

develop data processing applications using far less code

than previous languages.

These languages involve defining screen and report

layouts, and include a minimum amount of code for

specifying formulas.

Fourth-generation languages, also known as application

generators, are widely used for the development of

business applications in large-scale environments.

However, while third-generation languages can be

adapted to any programming task, fourth-generation

languages are specific to business data processing

applications.

Generating the application may involve running a

process that produces source code in a language such as

Cobol or C. This output code would then be compiled to

produce the application itself.

Alternatively, the formats may be compiled into binary

data files and a run-time facility may be used to display

the screens and operate the application.

161

4.1.4. Object-Orientated Languages

Object-orientated languages have existed since the

earliest days of computing in the 1960’s, however they

only grew into widespread use in the 1990’s.

Many object-orientated languages are extensions of

third-generation languages.

4.1.4.1. C++

C++ is a major OO language. C++ is an extension of C.

Some of the facilities of C++ include the ability to define

objects, known as classes, containing data and related

subroutines, known as methods. These classes may

operate at several levels and sub-classes can be defined

that include the data and operations of other class

objects.

C++ also supports operator overloading, which allows

operators such as addition to be applied to newly-created

data types.

4.1.4.2. Java

Java is an object orientated language developed for use

in internet applications. It has a syntax that is similar to

C, but is not based on a previous language design.

Java includes dynamic memory allocation for creating

and deallocating objects, and a strictly defined set of

class libraries (subroutines) that is intended to be

portable across all operating environments.

162

Java generally runs in a “virtual machine” environment

for portability and security reasons.

4.1.5. Declarative Languages

4.1.5.1. Prolog

Prolog is a declarative language. A prolog program

consists of a set of facts, rather than a set of statements

that are executed in order.

Prolog is used in decision-making and goal-seeking

applications.

Once the program has been defined, the prolog

interpreter then uses the defined facts in an attempt to

solve the problem that is presented.

For example, a prolog program may include the moves

of a chess game. The prolog interpreter would then use

the facts that were defined in the program to determine

the moves in a computer chess game.

4.1.5.2. SQL

SQL, Structured Query Language, is a data query

language that is used in relational databases. SQL is a

declarative language and groups of records are defined as

a set, which can be retrieved or updated.

SQL statements may be executed in sequence however

the actual selection of records is based on the structure of

the selection statement.

4.1.5.3. BNF Grammars

163

A Backus Naur Form grammar is a language that is used

to specify the structure of other languages.

The syntax of some programming languages can be fully

specified using a set of statements written as a BNF

grammar.

BNF grammars are declarative and specify the structure

and patterns of a language.

4.1.6. Special-Purpose Languages

4.1.6.1. Lisp

Lisp is a highly unusual language that was developed

early in the history of computing, and used in artificial

intelligence research.

All data items in Lisp are stored as lists. All processing

in Lisp involves scanning lists.

The syntax of Lisp is very simple, but involves massive

amounts of brackets as lists are defined within lists

which are within other lists.

The program code itself is also stored in lists, as well as

the data items.

4.1.6.2. APL

“A Programming Language”, APL is a language that was

developed for actuarial calculations involving insurance

and finance calculations.

APL is highly mathematical and includes operators for

matrix calculations etc. APL code is very difficult to read

and the APL character set includes a wide range of

164

special characters, such as reverse arrows ←, that are not

used in other programming languages or general text.

APL makes extensive use of a large number of operators

and symbols and contains few keywords.

4.1.6.3. Symbolic Calculation Languages

Some packages for evaluating and displaying

mathematical functions include symbolic calculation

languages.

These packages recognise mathematical equations, and

can re-arrange equations and solve the equations for a

particular variable.

In contrast, standard programming languages do not

recognise full mathematical equations, but recognise

expressions instead.

For example, the statement “y = x * 2 + 5” would be

interpreted as “determine the value of “x”, multiply it by

two, add five and then copy the result into the variable

“y” in most third-generation languages

The equals sign is deceptive as it does not represent a

statement of fact, as in an equation, but it represents an

action to be performed.

The “=” sign is the assignment operator. In some

languages a different symbol such as “:=” is used for the

assignment operator.

Although the expression on the right hand side of the “=”

sign is evaluated as an expression, the value on the left-

hand side of the “=” sign is simply a variable name.

True mathematical equations such as “y - 5 = x * 2” are

not recognised by standard programming languages.

165

However, a language that supports symbolic calculation

would recognise this equation and would be able to

calculate the value of any variable when given the value

of the other variables.

Also, some symbolic calculation languages support

calculations with true fractions.

In most programming languages ⅓ is treated as one

divided by three, with a result of 0.333333. Multiplying

this result by 3 would produce 0.999999, not 1.

Using true fractions, however, ⅓ * 3 = 1.

4.1.7. Hosted Languages

Hosted languages are compiled and executed within an

application.

The application may provide a development

environment, which may include editing and debugging

facilities.

The application also supplies the infrastructure necessary

to display screen information, print, load data etc. A

range of built-in functions would also be included,

depending on the particular functions supported by the

application

4.1.7.1. Macro Languages

Applications may include a language for specifying

formulas or developing full program code within macros.

These languages may be specifically developed for the

application, or they may be implementations of standard

programming languages.

166

Accessing data and functions in other parts of the

application may be slow, as multiple layers of software

may be involved. However, accessing data and variables

within the program itself may be reasonably fast,

depending on the interpreter used to run the code and the

level of compilation used.

4.1.7.2. Database Languages

Some database systems include programming languages

that can be used to develop complete applications.

In some cases these languages are interpreted and may

execute relatively slowly, while in other cases a full

compiler is available.

4.1.8. Execution Script languages

Running programs, coping files and performing other

operating system functions can be done with languages

such as shell scripts and job control languages.

Statements in script languages include program and file

names, and may also support variables and basic

operations such as “if” statements. Script languages may

include pattern-matching facilities for searching text and

matching multiple filenames.

Although compilers may be available in some cases, in

general a script language is interpreted and run on a

statement-by-statement basis by the operating system or

command line interpreter.

4.1.9. Report Generators

167

Report generators allow a report to be automatically

produced once the layout and fields have been defined.

Formulas can be added for calculations, however code is

not required to produce the report itself.

Report generators are useful for producing reports that

appear in a row and column format.

Document output, such as a page with graphs and tables

of figures, could be produced by using a standard

language in a graphical printing environment.

Alternatively, the document could be hosted in an

application such as a word processor, with macro code

used to update data from external sources.

4.2. Development Environments

4.2.1. Source Code Development

The three fundamental elements of a development

environment are an editor, a compiler and a debugger.

An editor is used to view and modify the source code.

Compilers compile the source code and produce an

executable file. Alternatively, interpreters or virtual

machines may provide the run-time infrastructure needed

to execute the program.

A debugger is a program that is used to assist in

debugging. Debuggers allow the program to be stopped

during execution, and the value of data variables can be

examined.

168

In some environments all three programs may be

integrated into a single user interface, while in other

environments separate programs are used.

4.2.2. Version Control

Version control or source-code control systems perform

two main functions.

They generally allow previous versions of a file to be

accessed, so that changes can be checked when

debugging or developing new code.

Also, these systems allow a source file to be locked, so

that problems do not occur where two people attempt to

modify the same source code file at the same time.

4.2.3. Infrastructure

Programs are generally developed using other code

facilities in addition to the language operations.

This could include subroutine libraries, functional

engines, and access to operating system functions.

The code elements may be sourced from previous

projects, a set of common routines across projects,

standard language libraries and from external sources.

4.2.3.1. Changes to Common Code

Changes to existing common code can be handled in

several ways.

For systems that are currently in development, or where

future changes are expected, the systems using the

169

subroutine or function can be updated to reflect the

change.

For old systems where a large number of changes are not

expected, a separate copy of the common code may be

stored with the system. This avoids the need to

continually update the system to simply reflect changes

in the common code.

Alternatively, in some cases the existing code can be left

intact and a new subroutine can be added with a slightly

different name. This is impractical when a large number

of changes are made, but may be used when external

programs use the interface and the existing definition

must be left unchanged for compatibility reasons.

4.2.3.2. Development of Common Functions

Common functions are usually reserved for functions

that perform general calculations and operations that are

likely to be used in other projects.

Future changes can be reduced if the subroutine supports

the full calculation or function that is involved, rather

than the specific cases that may be used in the current

project.

Error handling in common code may involve returning

error conditions rather than displaying messages, as the

code may be called in different ways in future projects.

Also, the code may avoid input and output functions

such as file access, screen display and printing. This

would allow the functions to be used by different

projects in different circumstances.

170

4.3. System Design

System design is largely based on breaking connections,

and using different approaches for different components

of the design.

This includes connections between the following

components:

• Processes performed and the internal system

design.

• The system design and the coding model.

• The user interface structure and the code control

flow model.

• The application data objects and the system

objects.

• Database entities and program structures, and the

specific data.

• The sequence of function calls and the outcome.

• The outcome of a subroutine call and previous

events.

• The outcome of a subroutine call and external data.

• Connections between major code modules.

4.3.1. Conceptual Basis

A system will generally be built on the concepts that

underlie a particular field or process.

For example, a “futures” transaction is a financial-

markets transaction that involves fixing future prices for

buying or selling a commodity.

An accounting system may treat this as a contract, with a

set of payments and a finishing date.

171

An investment management system may treat this as an

asset that had a trading value. This value would rise and

fall each day as the financial markets moved.

This same instrument is recorded in completely different

ways under different conceptual models.

One model records a value that rises and falls daily,

while the other model records a set of payments over

time.

In some cases the basic concepts and structures are

clearly defined, and a system could be directly built on

the same foundations.

However, designing a separate set of concepts for the

system may lead to a more flexible internal structure that

could be more easily adapted to different processing.

In other cases, a system may include functions that relate

to more than one conceptual framework. In these cases, a

separate set of concepts and models may need to be

developed to implement both frameworks.

For example, in the previous case of the futures

transaction, a system that performs both accounting an

investment management functions would need to use an

internal concept of a futures transaction that allowed the

implementation of both the accounting view, of regular

payments, and the investment view, of a traded asset.

For example, one internal approach would be to break

the link between “accounts” and “transactions”, and

simply record cashflows. An account could be a

collection of cashflows that matched a certain criteria.

Also, the link between assets and trading values could be

broken, resulting in a model based on “actual cashflows”

(historical transactions), “predicted casflows” (forecast

payments) and “potential cashflows” (market value).

172

4.3.2. Level of Abstraction

One approach to systems design is to directly translate

the processes, data objects and functions that the

application supports into a systems design and code.

The leads to straightforward development, and code that

is clear and easily maintained.

However, this approach can also lead to a large volume

of code, and produce a system structure that is difficult to

modify.

A higher level of abstraction may be produced by

defining a smaller number of more general objects, and

using these objects and functions to implement the full

application.

This approach may reduce code volumes and create a

more flexible internal structure. However, the initial

design and development may be more complex and the

system may be more difficult to debug.

For example, rather than developing a set of separate

reports or processes, a general report function or

processing function could be developed, with the actual

result being dependant on the flags and options selected.

At a higher level of abstraction, an implementation may

include internal macro languages for calculations,

fundamental operations on basic objects such as

calculations on blocks of data, and a complete

disconnection between the application objects and

processes and the internal code structure.

This process may lead to even smaller code volumes and

more flexible internal operations, with the disadvantage

of longer initial development times and complex

transformations between internal objects and application

processes.

173

Low levels of abstraction are useful when there is little

overlap between processes, while high levels of

abstraction are useful for systems such as software tools,

and for processing systems that include a large number

of similar operations.

Low levels of abstraction involve mainly application

coding and little infrastructure development, while high

levels of abstraction involve mainly infrastructure

development with little application coding.

Output is generally more consistent with highly

abstracted systems. In low abstraction systems, minor

differences in formatting and calculation methods can

arise between different processes.

4.3.3. Data Information vs. Structure
Information

In general, system structures are simpler and more

flexible, code volumes are smaller, and code is simpler

when information is recorded within a system as data

rather than as structure.

For example, a system may involve several products with

a separate database table and program structure for each

product.

The structure of the database tables and program objects

would specify part of the information concerning the

application elements.

A simpler approach would be to use a single product

table and structure, and record the different products as

data records and table entries.

A further generalisation would be to remove product-

specific fields and processing, and store a set of general

fields that could be used to specify options for a general

set of processing.

174

In some cases an application may contain a large number

of structures, objects and functions, while the database

definition and code structure may implement a small

number of general structures.

The application details would then relate to the data

stored within the database and code tables.

In general a simpler system may result from using the

minimum number of database tables and program

structures.

4.3.4. Orthogonality

When a set of options is available for a process,

functionality may be increased if the options are

independent and all combinations of the options are

available.

For example, a report module may define a sort order,

layout type and a subtotalling method.

If each option was implemented as a separate stage in the

code, rather than implementing each combination

individually, this would lead to orthogonal functionality.

In the case of two sort orders, five layout types and three

subtotalling methods, there would be three major

sections of code and 2+5+3 = 10 total code sections.

However, the number of possible output combinations

would be 2*5*3 = 30 output report formats.

This function may have been derived from five separate

report formats.

By combining the report formats, overlapping code

would be eliminated leading to a reduction in code

volume, and the number of output formats would rise

175

from 5 to 30.

As another example, if a graphics engine supported three

types of lights and three types of view frames, then in an

orthogonal system any light could be used with any view

frame.

In practice some combinations may not be supported,

either because they would be particularly difficult to

implement, they would take an extremely long time to

execute, or because they specified logical contradictions.

For example, a list can be sorted in ascending or

descending order, but cannot be sorted in both orders

simultaneously.

When selected options conflict, one outcome may be

selected by default.

4.3.5. Generality

Generality involves functions that perform fundamental

operations, rather than specific processes.

For example, a calculation routine that evaluated any

formula would be a more general facility than a

calculation method that implemented a fixed set of

formulas.

A data structure that stored details of products would be

a more general structure than creating a separate data

structure for each product.

Performing processing based on attributes, flags and

numbers is a more general approach than implementing

specific combinations of options within the code.

176

For example, storing a formula on a record would be a

more general approach than storing a variable that

indicated that calculation method A should be used.

In cases where the same formula may appear on multiple

records, a separate table could be created to represent a

different database object, rather than including fixed

options within the code.

Generality also applies to functions that accept variable

input for processing options, rather than a value that is

selected from a fixed list of options.

For example, a processing routine that accepted a

number of days between operations would be a more

general routine than an alternative that implemented a

fixed set of periods.

In broad terms, a general process or function is one that

is able to perform a wider range of functions than an

alternative implementation.

4.3.6. Batch Processes

Batch processes are processes that perform a large

amount of processing, and are generally designed to be

run unattended.

This may include reading large numbers of database

records, or processing large amounts of numeric data.

When data problems occur during processing, this may

be handled by writing an error message to a log file and

continuing processing.

More serious errors, such as internal program errors or

missing critical data may result in terminating the

process.

177

4.3.6.1. Input Checking

Input data can be checked using a range of checks. For

example,

• Data that is negative, zero or outside expected

ranges.

• Data that is inconsistent, such as percentages that

do not sum to 100.

• Data that is greatly different from previous

values.

4.3.6.2. Output Checking

Interacting processes may involve a manual check of the

results, however in the case of a batch process, large

volumes of data may be updated to a database.

Output results can be checked using similar checks to the

input data, to detect possible errors before incorrect data

is written to a file.

4.3.6.3. Performance

Performance may be a significant issue with batch

processes.

Data that will be read multiple times can be stored in

internal program arrays or data record buffers.

The order in which the processing is performed can also

have a significant impact on execution speed.

When a one-to-many database link is being processed, if

the child records are read in the order of the parent key

then each parent record would only need to be read once.

178

For example, if account records where processed in

account number order, then the customer record would

have to be read for each new account. However, if the

account records were processed in customer number

order, then the accounts for each customer would be

processed in sequence and the customer record would

only have to be read once.

4.3.6.4. Rewriting

Batch processing code is often very old, as it performs

basic functions that change little over time.

Rewriting code may have lead to a reduction in

execution time, particularly if the code has been heavily

modified or a long time has elapsed since it was first

written.

When the code has been heavily modified, the code may

calculate results that are never used, read database

records that are not accessed and re-read records

unnecessarily.

This may occur when code in a late part of the process is

changed to a different method, however the earlier code

that calculated the input figures remains unchanged.

Re-reading records may occur as the control flow within

the module becomes more complex.

Also, re-writing the code may enable structures in the

database and the code to be used that were not available

when the module was originally written.

4.3.6.5. Data Scanning

179

A batch processes may also be written purely to scan the

database, and apply checks such as range checks to

identify errors in the data.

180

4.4. Software Component Models

A software component is a major section of a program

that performs a related set of functions.

For example, the user interface code handling screen

display and application control flow may be separated

into a major section of the program.

Calculation code may also be grouped into a separate

section of code.

Software components may consist of a section of related

code, or the functions performed by the component may

be grouped into a clearly defined functional interface.

4.4.1. Functional Engines

An engine is an independent software component that

uses a simple interface, and has complex internal

processing.

Database management systems are an example of a

functional engine.

Other engines may include calculation engines, printing

engines, graphics engines etc.

In some cases an engine executes as an independent

process, and communication occurs through a program

interface.

4.4.2. Abstract Objects and Functions

Software components such as processing engines are

generally more flexible and useful when they deal with a

181

number of fundamental objects and functions, rather than

a set of fixed processes.

For example, a calculation engine may calculate the

result of any formula that is presented in the specified

format, and apply formulas to blocks of data.

This would be a more useful component than an engine

that calculated the results of a fixed set of formulas.

4.4.3. Implementation

The model of data and functions that appears on one side

of the interface is independent of the internal structure of

the code on the other side of the interface, which may

use the same objects or may be structured differently.

For example, the code on the other side of the interface

could implement the objects and processes directly, or

translate function calls into definitions and attributes, and

perform actual processing when data or output was

requested.

Also, the interface objects themselves could be

implemented within the software component using a

smaller set of concepts. These objects could be used to

implement the full range of objects and functions that

were defined in the interface.

4.4.4. Single Entry and Exit Points

Software components are generally more flexible when

they operate through a single entry point.

Designing a single entry point interface may also lead to

a clearer structure for both the interface and the internal

code.

182

This involves defining a set of functions and operations

that are supported by the component, and passing

instructions and data through a single interface.

In some cases a single exit point could also be used.

In this case, the subroutine calls that are made within the

component would be re-routed through a single function

that accessed external operations. This function would

then call the relevant external functions for database

operations, screen interfacing etc.

This approach would allow the internal code of the

component to be developed completely independently.

Changing interfaces to external code, and using the

component in alternative situations, could be done by

modifying the external service routine.

4.4.5. Code Models

Separating a system into major functional sections allows

a different code model to be used in each section.

4.4.6. Sequence Dependance

Components are more flexible when independent

operations can be called in any order. For example, a

graphics interface may define that textures, positions and

lighting must be defined in that order, or alternately that

the three elements could be specified in any order.

4.4.7. Orthogonality

Orthogonality within an interface allows each option and

function to be selected independently, and all

combinations would be available.

183

This increases the functionality of the interface, and may

also make program development easier through less

restrictions of use of the software component.

4.4.8. Generality

A general functional interface is one that implements a

wide range of functions.

This may involve passing continuous data values as

input, rather than selecting from a pre-defined list of

options.

Fundamental functions and operations may be more

general than a software component interface that

includes a range of application-specific functions and

data objects.

184

4.5. System Interfaces

4.5.1. User Interfaces

4.5.1.1. Character Based Interfaces

Character based user interfaces involve the use of a

keyboard for system input, and fixed character positions

for video display.

Running functions may be done using menu options, or

through a command line interface.

4.5.1.2. Command Line Interfaces

A command line interface is based on a dialog based

system. This generally uses a character based interface

with keyboard input and a fixed character display.

Commands are typed into the system. The particular

function is performed, and processing returns to the

command line to accept further input.

Command line interfaces are often available with

operating systems, for performing tasks such as running

programs and copying files.

Some applications also include a command line

interface.

4.5.1.3. Graphical User Interfaces

185

Graphical user interfaces involve a graphical layout of

windows and data, and the use of a mouse and keyboard

to select items and input data.

Environments that support graphical user interfaces are

generally multi-tasking, and allow multiple windows to

be open and programs to be running at a particular time.

4.5.1.4. Other User Interfaces

In other circumstances, different devices may be used for

both input from the user and the display or output of

information.

Input devices could include control panels, speech

recognition etc. Output devices could include multiple

video displays, indicator panels, printed list output etc.

4.5.1.5. Application Control Flow

Control flow with applications may follow a menu

system. This is used in both character-based and

graphical environments.

Selecting an option from a menu may perform the

specified function, or display a sub-menu.

Menu systems can be hierarchical, with sub menus

connected directly to main menus. Functions may appear

in one place or they may appear on multiple sub-menus.

In some cases sub-menus may be cross-connected and a

submenu could jump directly to another submenu.

Other control flow models include event driven systems.

In this model, functions can be performed by selecting

application objects or command buttons and performing

the action required to run the function.

186

Application control flow may be process-driven or

function-driven.

Process-driven control flow would involve selecting

menu options to perform various processes, and may be

used for data processing systems.

Function-driven systems focus on data objects rather

than processes. This approach is commonly used for

software tools.

In a function driven system, the object would first be

selected, and then the function to run would be invoked.

Program code can be structured in the same way as the

application control flow. This approach leads to a direct

implementation, with the structure of the internal code

following the structure of the application itself.

However, in other cases an indirect link may be more

suitable. For example, a process-driven system with a

large amount of overlap between processes could be

implemented internally using a function-driven code

structure, while a function-driven application may be

implemented internally as a set of processes.

4.5.2. Program Interfaces

Program interfaces are used when a program connects to

another program or software component.

This includes interfaces to subroutine libraries, database

management systems, operating system functions,

processing engines and other major modules within the

system.

187

4.5.2.1. Narrow Interfaces

Narrow interfaces occur when the interface consists of a

small number of fundamental operations and data

objects.

The use of a narrow interface enables the code on each

side of the interface to be changed independently.

Also, the interface itself may be easier to use.

This is a loosely-coupled interface, as in theory the

application program could be coupled to a different

software component that performed similar functions,

possibly using a translation layer.

This may occur, for example, in porting an application to

another operating system that used different screen or

printing operations. An alternative screen or printing

engine could be developed for the alternative operating

system, and coupled to the main program.

An example of a narrow interface is a data query

language, with statements passed to a database engine.

The data retrieval and update operations are specified by

the statement contained in the query text string.

A subroutine library that contained a large number of

subroutines, each performing a simple function, would

be a wide interface.

The functions in subroutine library could represent a

closely-coupled interface, as the interface would contain

a large number of links and interactions. This would

prevent the code on either side of the interface from

being changed independently, as this would also require

significant changes on the other side of the interface.

Also, the code could not be replaced with an alternative

library that used a different internal structure, as the

structure itself would be part of the interface.

188

Many program interfaces are implemented as subroutine

calls, however in the case of a narrow interface this may

consist of a few subroutines providing a link that passes

instructions and data through the interface.

A narrow functional interface does not necessarily imply

a slow data transfer rate, as would be the case in a

narrow bandwidth network.

A narrow functional interface may support the transfer of

large blocks of data, in contrast to a narrow data channel

which involves transferring data serially, with small data

items transferred in sequence, rather than a parallel

transfer of all the data in a single large block.

4.5.2.2. Passing Data

Data can be passed though interfaces using parameters to

subroutines, or pointers to data objects stored in memory.

Another approach involves the use of a handle.

A handle is a small data item that identifies a data object.

The handle is returned to the calling program, however

the data object itself remains within the software

component that was called.

For example, calling a graphics engine to load a graphics

object may result in the object being loaded into the

graphics engine’s memory space, and a handle being

returned to the calling program.

The handle could then be used to identify the object

when further calls were made to the graphics engine.

4.5.2.3. Passing Instructions

189

Rather than containing a large number of subroutine calls

to perform individual functions, a narrow program

interface works by passing instructions through the

interface.

This may take the form of a simple language, such as a

data query language. A calculation engine may receive

text strings containing formulas or simple statements for

applying formulas to data objects.

Instructions can also be passed as a set of numeric

operation codes.

For example, an engine for displaying wireframe images

of structures could implement instructions to define an

element, define connections between elements, define a

view position and generate an image.

These functions could be implemented in an interface by

using a numeric value to represent the operation to be

performed, and a handle to indicate the data object.

This approach would lead to a simple interface that was

easily extended, and would also support data transfer

through network connections or inter-process

communication channels.

4.5.2.4. Non-Data Linking

In general, a program interface passes data between

processes, and subroutines and data variables on the

other side of the interface cannot be directly accessed.

This allows the interface to be clearly defined, and

prevents problems due to interactions between sections

of code on either side of the interface.

Additionally, if instructions and data are passed through

an interface channel, then the two code sections can

execute independently, and may operate in separate

190

memory spaces, through inter-process communication or

through a network communication channel.

However, in some cases callback functions are

implemented.

This occurs where the engine calls a subroutine within

the main program.

In some cases callback functions are unavoidable. For

example, a general sorting routine that applied to any

type of object would need to call a subroutine in the main

program to compare two objects, so that the order of the

sorting could be determined.

191

4.6. System Development

4.6.1. Infrastructure and Application
Development

System development can be broken into two separate

phases.

Infrastructure development involves developing facilities

that are used internally within the program.

This could include developing data structures and the

subroutines for operating on them, developing subroutine

libraries, developing processing engines, developing

common modules in process-orientated systems, and

developing object models in object-orientated systems.

Application development involves writing code that

performs the processing required by the system, handles

the user interface, and performs the functions and

operations that the application supports.

In some projects, the majority of design and coding may

involve application coding. This may be based on

straightforward processing, or it may be based on an

existing infrastructure.

The infrastructure used could include facilities developed

for earlier projects, or a combination of operating system

functions, standard language libraries, and externally-

sourced libraries.

In other projects the majority of the development process

may involve infrastructure development, with the

application comprising a collection of simple code that

calls general processing facilities.

192

This may occur in processing applications with a large

degree of overlap between similar functions, and also

with function-driven applications such as software tools,

where the application itself may be largely a user

interface around a set of general facilities.

The development of some infrastructure can result in a

system that uses less code, is more flexible, and is more

consistent across different parts of the system.

However, developing infrastructure code is time

consuming. Also, a complex infrastructure may make

system development more difficult if the complexity of

the infrastructure is greater than the complexity of the

underlying application requirements.

4.6.2. Project Systems Development

Developing a system on a project basis involves a set of

stages.

Typically a development process could include the

following steps

• Requirements Analysis

• Systems Analysis

• Systems Design

• Coding

• Testing & Debugging

• Documentation

4.6.2.1. Requirements Analysis

Requirements analysis involves defining the broad scope

of a system, and the basic functions that it will perform.

This may be based on a document that is supplied as an

input to the systems development process.

193

Alternatively, the requirements analysis can be done at

an early stage of the project, prior developing the system.

Ideally the requirements specification should outline the

basic functions and operations that the system should

provide, along with a set of desirable but non-essential

functions.

4.6.2.2. Systems Analysis

Systems analysis involves defining the functions that the

system should perform, including details of the

calculations, processing, and the data that should be

stored.

This process results in the production of a functional

specification.

The functions and data required can be established by

determining the outputs that the system should produce,

and working backwards to the input data and the

calculations that are necessary to produce the outputs.

Some additional data may be stored purely for record-

keeping purposes, however this process would identify

the fundamental data that was needed for the processing

to be completed.

The functions specified may include interactive facilities

and batch processing functions.

Exceptions and special cases are a minor issue in manual

processing and calculation environments, but they are a

significant issue in systems design.

For example, if one formula applied to 10,000 clients and

a different formula applied to 1 client, then double the

amount of code would have to be written to cater for the

1 client that used a different formula.

194

Processing exceptions arise when discontinued products

or operations remain active, when separate arrangements

apply to conversion from another product or situation,

and when non-standard arrangements are entered into.

Special cases can be handled by consolidating a range of

situations into a number of product features and options,

including override values on individual records that

override default processing values, and including user-

defined formulas in database fields that can be added to a

list of available formulas.

4.6.2.3. Systems Design

Systems design involves designing the internal structure

of the system to provide the application facilities that are

specified in the functional specification.

In some cases, the system design and code structure may

follow the structure of the functional specification and

the application control flow.

This may lead to a process-driven code structure for a

data processing system, or a function-driven code

structure for a software tool.

In other cases, a different code structure could be used.

For example, where there was a large amount of overlap

between different processes, implementing a process-

driven application using a function-driven code structure

may result in a large reduction in code volume.

As another example, application modules may be

grouped by process type, while the code may be grouped

by internal function, such as screen display, calculation

routines etc.

195

4.6.2.3.1. Future Expansion

In some cases, assumptions and restrictions in the

functional specification could be relaxed to allow for

future expansion.

For example, a many-to-many link could be

implemented when the data is currently limited to one-

to-many combinations, but future changes may be likely.

Also, a general calculation facility could be

implemented, rather than programming a fixed set of

existing formulas.

4.6.2.4. Code Development

In some cases a detailed system design document may be

produced.

In other cases, code development may follow directly

from the functional specification, or from a code

structure that has been selected for implementing the

system.

Testing and debugging follows a cycle of testing,

correcting problems, releasing new versions of the test

system and continuing testing.

4.6.2.5. Formal Development Methods

Formal development methodologies involve a highly

structured set of steps in the development process. The

processes and outputs of each stage are clearly defined.

This approach is used is some data processing

development environments.

196

Formal methods define the stages in the development

process. This includes the processes that are performed

during each stage and the documents and diagrams that

are produced.

Formal methods have advantages in managing and

developing large data processing systems.

The steps are clearly defined, and the results of the

development processes, both in terms of the time period

involved and that shape of the final system can be clearly

identified at the beginning of the project.

However, there are several disadvantages with formal

methods.

Formal methods generate large volumes of paper

documentation, and may involve several layers of

meticulous development to produce a final section of

code that may be quite straightforward.

A more serious disadvantage relates to the flow-through

structure of the development process. There is a strong

linking flow-through from the initial requirements,

through to systems analysis and design, and finally

coding.

This may result in the production of a system that closely

matches the existing process model and data objects.

While this system may perform the processing functions

without difficulty, it may also be more complex and

inflexible than alternative implementations.

A system design based on a range of general objects and

functions may lead to a simpler data, code and user

interface structure than a system that directly implements

existing processes.

4.6.3. Large System Development

197

A large system may be straightforward in design, but

involve a large number of processes, database tables,

reports and screens.

Also, a large development may involve a smaller amount

of code, but may implement a complex set of operations.

4.6.3.1. Separation of Modules

Large system development may be more effective when

major modules are clearly separated, and communicate

through defined programming interfaces.

This enables each section to be developed independently.

Also, where one section is not complete, another section

can continue development by referring to the defined

interface when including processes that require a link to

the other module.

4.6.3.2. Consistency

Consistency in design, use of language features and

coding conventions is important in large systems.

When code is consistently developed, different sections

of the code can be read without the need to adjust to

different conventions.

Also, consistency reduces the chance of problems

occurring within interfaces between modules.

4.6.3.3. Infrastructure

Large developments generally involve the development

of some common functions and general facilities.

198

In too little infrastructure is developed, a large amount of

duplicated code may be written. This may result in a

system that has large code volumes, is rigid in structure,

and does not include internal facilities to enable future

modules to be developed more easily.

Also, if too much infrastructure is developed, long delays

may be involved and the final system may involve

unnecessarily complex code.

4.6.4. Evolutionary Systems Development

Evolutionary systems development involves the

continual development of systems and releasing new

versions on a regular basis.

Software tools are frequently developed and extended on

an evolutionary basis.

The sequence of evolutionary development follows a

pattern of adding a range of new features and facilities,

and then consolidating a range of features into a new

abstract facility.

This leads to minor and major changes, as features are

continually added, and then a major upgrade occurs as

the design is re-structured to include new concepts and

structures that have arisen from the individual features.

Systems that are not restructured on a regular basis can

become extremely complex, with execution speed and

reliability decreasing as time passes and more individual

features are added.

The sequence of minor and major changes applies to the

internal code structure, and also the use of the

application itself, and the objects and facilities that it

supports.

199

Evolutionary systems generally become more complex

as time passes. Existing features are rarely removed from

systems, however new features and concepts may be

continually added.

In some cases, this results in the system becoming so

large and complex that it effectively becomes unusable

and unmaintainable, and is eventually abandoned.

The life span of an evolutionary system can be extended

by making major structural changes when the system

design has become more complex than the functions that

it performs, and by removing previous functions from the

system as the system evolves in different directions.

4.6.5. Ad-hoc System Development

Ad-hoc system development involves creating systems

for unstructured and short-term purposes.

Examples include test programs, conversion programs

and productivity tools.

In some cases ad-hoc developments may be done using a

macro language that is hosted within an application such

as a spreadsheet.

This allows a simple process to be performed without the

overhead involved in developing a complete program.

The application provides the environment for loading

data, displaying information, printing etc.

An alternative to using an application program as a host

would be to develop a small temporary module within an

existing system. This would allow the process to use the

internal facilities of the main program to perform

calculations and processing.

200

Execution speed may be less important in an ad-hoc

development than in a permanent system.

This may allow simpler methods to be used to write the

code, such as the use of strings, simple algorithms and

hard-coded values.

In cases where the system is expanded in size and

continues in use on a long-term basis, the original design

and coding practices may be unsuitable for long-term

operation.

This could be addressed through a major consolidation

and re-design, and commencing on an evolutionary

development path.

In other cases, particularly when the programming

language or development environment itself is unsuitable

for long term operation, a complete redevelopment of the

system could be conducted.

4.6.6. Just-In-Time System Development

Just-in-time techniques are based on responding to

problems as they arise, rather than relying on forward

planning to predict future conditions.

Just-in-time system development may involve

developing and releasing sections of a system in

response to processing requirements.

This approach involves responding to changes in

processing requirements and adapting the system to

changing conditions, rather using project developments

over long timeframes that rely on an expectation of

future conditions.

A Just-in-time development approach may be suitable for

rapidly changing environments.

201

This approach avoids several problems that are inherent

in project developments.

The requirement for a system often arises before the

system is developed, not at the time that the development

will be completed.

As some large development projects may take several

years, this means that other methods must be found to

perform the functions during the development period.

This may involve large volumes of manual processing,

development of temporary systems, patchwork changes

to existing systems, and populating databases with

information that later proves to be in an unsuitable

format.

Large development projects may be abandoned or never

fully implemented, due to unmanageable complexity,

flaws in design, or circumstances having changed so

much by the time the project is completed that the

system is not of practical use.

Disadvantages with just-in-time development include the

fact that the process is deliberately reactive, and so an

effective and flexible system design may not appear

unless the process is combined with regular internal

redesign, and proactive changes based on a medium-term

view.

This approach is similar to the evolutionary development

approach. However, the evolutionary approach involves

continuous development of a system, while the just-in-

time approach involves a stable system that changes as

required in response the changes in the processing

environment.

4.6.6.1. Advantages

202

Using a just-in-time approach, systems are available at

short notice. This may avoid problems with using

temporary systems, and storing data in ways that later

proves unsuitable for historical processing.

As the development adapts to changing conditions, the

system may be more closely matched to the processing

requirements that a system developed over a long period,

and based on assumptions about the type of processing

required

4.6.6.2. Disadvantages

A just-in-time approach could lead to a system that is

structured in a similar way to the processing itself.

This would not generally be an ideal structure, as this

would lead to a rigid code and data design that was

difficult to modify.

An alternative would be to retain a separation between

the system structure and the processing requirements,

and adapt the system structure independently of the

processing changes.

Testing could become an issue with just-in-time

development, as frequent releases of new versions would

increase the amount of testing involved in the

development process.

If structural changes were not made regularly, a just-in-

time process could degenerate into a maintenance

process involving patchwork changes to a system.

This could occur when changes were implemented

directly, rather than adapting the system structure to a

new type of process.

If the development process is tied in too closely with the

use of the system, then alternative system designs and

203

structures may be lost and the system may be limited to

the current assumptions and methods used in processing.

4.6.6.3. Implementation

In general, just-in-time development may be more

effective when the system structure is adapted to suit a

new process, rather than implementing the change

directly.

For example, a change to a calculation could be

implemented by adding a new facility for specifying

calculation options, rather than including the specific

change within the system.

This process would allow the system to retain a flexible

and independent structure, based on a range of general

facilities rather than fixed processes.

When a large number of changes had been made, internal

structures could be changed to better reflect the new

functions and processes that were being performed.

4.6.7. System Redevelopments

Many systems developments are based on replacing an

existing system.

A system that has been heavily modified and extended

often becomes complex, unstable and difficult to use and

maintain.

Also, the functions and processes performed may change

and a system may not include the functions required for

the particular task being performed.

Redevelopments may follow the standard project

development steps.

204

In some cases, a better result may be achieved by

avoiding a detailed review of the existing system.

This may occur because the existing system will be

based on a set of structures and assumptions that may not

be the ideal structure to use for a new development.

Performing a detailed review of the existing system may

lead to replacing the system with a new version based on

the same structure, rather than designing a new structure

based on the actual underlying requirements.

However, a review of the existing system after the design

has been completed may highlight areas that have been

missed, and particular problems that need to be

addressed.

System redevelopments generally involve a data

conversion of the data from the previous system.

This can be done by writing conversion programs to

extract the fundamental data, and insert the data into the

new database structure.

4.6.8. Maintenance and Enhancements

System maintenance involves fixing bugs and making

minor changes to allow continued operation.

This may include adding new database fields and

additional processing options, or modifying an existing

process due to changed circumstances.

In some cases, a system may appear to operate normally,

however invalid data may occasionally appear in a

database.

In these cases, error checking code can be added into the

system to trigger a message when the invalid results are

205

produced. This may enable the problem to be located by

trapping the error as it occurs, enabling the data inputs

and processing steps to be identified.

Alternately, in a batch process the data could be written

to a log file when the invalid condition was detected.

Maintenance changes can have a high error rate,

particularly in function-driven rather than process-driven

systems.

This is related to the fact that the code may be

unfamiliar.

Also, the system design is frozen, and changes must be

made within the existing structure. This is in contrast to

general development, when the structure of the code is

fluid and can evolve as new code is added to the system.

In general, maintenance changes may be safer when they

use the same coding style and structures as the existing

code.

Also, implementing the minimum number of changes

required to correct the problem is less likely to introduce

new bugs than if existing code is also re-written.

Testing that a maintenance change has not disturbed

other processes can be done by running a set of processes

and producing data and output before the change is

made.

The same processes can be re-run after the change to

check that other problems have not appeared.

Enhancements are larger changes that add new features

to the system.

These changes may be done on a project basis and

include the full analysis and design stages.

206

At a coding level, problems are less likely to occur if the

existing system structures are used, and the code is

structured in a similar way to the existing code within the

system.

An example would be adding a module for a new report

to a system.

In this case, the code structures used for the other report

modules could also be used for the new module.

In general, minor bugs and problems should be resolved

where possible. A bug that appears to be a minor

problem may be the cause of a more serious problem in

another part of the system, or may have a greater impact

in other circumstances.

When a large number of maintenance changes have been

made to a system, the control flow and interactions in the

code can become very complex. This can result in a

change that fixes one problem, but leads to a different

problem appearing.

This problem can be addressed by re-writing sections of

code that have been subject to a large number of

maintenance changes.

4.6.9. Multiple Software Versions

In some systems, multiple versions of the system must be

developed and maintained concurrently.

This may apply when customised versions of the

program are supplied to different clients, or when the

system is provided on several operating platforms.

Multiple versions can be implemented by using

conditional compilation, which allows different sections

of code to be compiled for different versions, keeping

multiple versions of source code files, and using

207

configuration parameters in files or databases to select

processing options.

Extending the general functionality of a system to cover

the range of different uses may be a better solution in

some cases.

Maintaining multiple versions can lead to problems with

tacking source code and executable files, and may

involve maintaining larger volumes of code.

208

4.6.10. Development Processes Summary

Development Process Description

Infrastructure Development The development of

general functions,

common routines and

object structures.

Application Development Development of code to

implement application

specific functions and

processes.

Project Development Development of a system

from analysis through to

completion on a project

basis.

Evolutionary Development Continual development

of a system.

Ad-hoc Development Development of

temporary and

unstructured systems,

such as testing programs

and productivity tools.

Just-In-Time Development Adapting a system to

meet changing

requirements, and

implementing modules as

they are developed.

System Redevelopment Developing a system on

a project basis to replace

an existing system.

Maintenance Minor changes to an

209

existing system to allow

continued operation.

Enhancements Additional functions

added to an existing

system.

210

4.7. System evolution

4.7.1. Feature & Structural growth

System evolution involves continually adding new

features to a system.

These features may include an expansion in the types of

data that can be stored, an increase in the range of

calculations and functions that can be performed, and an

increase in the type of reports and displays that can be

generated.

These new features increase the complexity and

functionality of the system, however they do not affect

the structure of the system or the concepts on which it is

based.

As the system evolves, changes to the structure and

underlying concepts of the system may also be made.

This includes abstraction, which combines specific

objects into general concepts.

Also, the usage and purpose of the system may also

evolve over time. Many systems are used for tasks that

are very different from their original uses.

This can be addressed by changing the basic concepts on

which the system rests to other structures.

For example, a system that was originally a processing

system may evolve into a design tool, or vice versa,

which would involve different code structures and basic

functions.

When changes are made to system functions and the

system structure no longer matches the functions that the

211

system performs, the system can become complex and

unstable.

In this situation, re-aligning the internal structure with

the functions that are performed may lead to a significant

reducing in code volume, and an increase in processing

speed and reliability.

Changes occur when the system is applied to different

types of processing or environments, and also when

techniques and approaches change.

This applies at both the coding and design level, and at

the level of the objects and processes that the application

uses.

4.7.2. Abstraction

Abstraction is the process of combining several specific

objects or concepts into a single, more general concept.

This applies within the code, within the objects and

functions that are used in the application, and in database

design.

The systems evolution process typically involves

continually adding features, and periodically combining

a range of features into a new abstract concept.

For example, in the code a number of statistical functions

may be added over time. As the number and complexity

grows, these functions could be replaced with a generate

data set object that implemented a range of functions on

sets of data.

In an application, formatting features could be added to a

range of objects and processes. As the formatting

features become increasingly complex, the individual

formatting features could be replace with a single

212

“format” object that could be attached to any other

object.

This change could reduce the complexity of the code,

consolidate data items within the database and make the

system easier to use and more flexible.

However, implementing this change could also involve

changes in a large number of different code sections, and

may also require a database or file format conversion.

In a database structure example, a database may initially

contain a “customer” table. As the system changes, a

“supplier” and “shipping agent” table could be added.

These tables contain related information, and could be

consolidated into a single table using a general concept

of “counterparty”.

4.7.3. Changing the Code Model

As a system evolves there may be sections of code that

are more suited to a different code model than the

existing model.

For example, process-driven code could be changed to

function-driven code when a large amount of duplication

had appeared within the code.

An example would be writing a general report-

processing routine to replace a large number of similar

reports.

Function-driven code could be changed to process-driven

code when the functions had become complex, and could

be implemented more easily using a process approach.

An example would be a data conversion and upload

facility that had become extremely complex, and could

213

be re-written using a number of separate process-

orientated routines.

Table driven code could be implemented when a large

number of similar operations had appeared within the

code, such as menu item definitions and definitions of

data objects.

Object orientated code could be included in a function-

driven section of code.

In some cases the object–orientated structure model may

not be effective in process-driven code, and standard

procedural operations may be simpler and clearer.

In some cases, a change to a different code model may

commence, and during the re-writing it may become

apparent that the new code model would not be an

improvement on the existing structure. In this case, the

newly-written code can be abandoned leaving the

existing structure in place.

In other cases, a drastic reduction in code size and

complexity can be achieved by changing to a different

code structure.

4.7.4. Rewriting Code

When code is initially implemented, the structure may

follow the design and ideas behind the development.

After the code has been written, it may be able to be

consolidated by rewriting sections to simplify the

structure in the light of the fully written section of code.

This process can also be applied to code that has been

modified several times.

In this case, the code may develop a complex control

flow pattern and a large number of interactions between

214

different sections of the code. This can make maintaining

the code difficult and lead to an increased frequency of

bugs and general instability.

This situation can be addressed by rewriting sections of

code to simplify the structure and control flow.

Reviewing code may be beneficial if a significant period

of time has elapsed since the code was developed. In an

evolutionary system, there may be a range of subroutines

and facilities that could be used to simplify the code that

were not available when the code was originally

developed.

4.7.4.1. Combining Functions and Modules

Within an application, and also within the code, changes

to functions may result in two modules or application

functions performing a similar process.

In these cases, a single process could be used to replace

the previous processes and simplify the design.

4.7.5. Growing Data Volumes

Data volumes generally increase in systems over time,

sometimes at dramatic compounding rates.

As data volumes grow, processes that were previously

performed manually may be automated. This requires

data to specify the processing options and calculation

inputs.

In general, small data volumes may allow for free-format

entry of customised information, while large data

volumes generally require fixed fields that can be used to

perform automated processing.

215

4.7.6. Database Development

As the code and system features change, the database

structure may also change.

Similar problems can arise with a number of database

tables storing similar data, and inconsistencies between

formats and structures in different parts of the database.

This can be addressed through changing the database

definition to simplify the structure. This may involve

merging related tables and using field attributes to

identify separate types, or creating new tables to specify

independent concepts that have arisen within existing

tables.

4.7.7. Release Cycles

Systems that are continually modified are generally

released as new versions on a periodic basis.

Minor upgrades would include bug fixes and minor

enhancements, while major upgrades may include

significant new functionality and possibly require

database or file format conversions.

Some systems that are continually developed are

effectively live at all times, with changes being

introduced as soon as they are made.

This approach can be used with maintenance changes.

However, problems can occur when larger and more

frequent changes are introduced in this way.

Testing a full system is not feasible when each individual

change is updated separately to the production version of

the system.

216

This may lead to bugs occurring, and problems that lead

to the incorrect updating of data may be difficult to

unwind.

217

4.8. Code Design

4.8.1. Code Interactions

Reducing interactions between different parts of a system

can have several benefits.

Systems development and maintenance may be easier, as

one section of code can be independently modified

without the need to refer to other sections of code.

Bugs may be reduced, as a cause-and-effect that is

widely separated through a system can produce problems

when one part of the code is changed without related

code sections being updated.

Portability is enhanced and independent modules can be

used in other projects or rewritten for other

environments.

In general, using data and operations that pass through

interfaces between modules, rather than including

interactions between one code section and a distant code

section, results in a system that is more flexible, easier to

debug and easier to modify.

4.8.2. Localisation

Localisation involves grouping the processing that

involves a particular variable or concept within a small

section of code.

This may involve determining conditions within a region

of code, and then passing flags to other subroutines,

rather than passing the data value itself.

218

For example, if a variable is passed through several

layers of subroutines and is then used in a condition,

there is a wide separation between the cause and effect of

the original definition of the variable, and its use in the

condition.

This increases the interactions between different sections

of the code, which can make reading and modifying the

code more difficult.

If the condition is tested in the original location,

however, and a Boolean variable is passed through, then

the processing of the original variable is contained within

the original section of code.

The subroutine using the Boolean flag would not access

the original data variable, and the calling function could

pass different values of the flag under different

conditions.

This approach reduces the interactions in the code and

leads to a more flexible structure.

4.8.3. Sequence Dependence

Sequence dependence relates to the issue of calling

functions in a particular order.

Code that is heavily dependant on the order of execution

can be more difficult to develop and maintain than code

that includes subroutines and general functions that can

be called in any order.

For example, a graphics engine may include functions

for initialising the engine, defining lights, loading

objects, defining surface textures, defining backgrounds

and displaying the image.

219

In a sequence dependant structure, each of these

functions would need to be performed in a particular

order.

Using a sequence-independent approach, the same

functions could be called in any order. Valid results

would be produced regardless of the particular order that

the subroutines were called in.

A certain order may still be required for operations that

are logically related, rather than related simply due to the

code implementation.

For example, the texture of an object could not be

defined until the object itself had been defined.

However, the lighting could be defined before the objects

were loaded, or the objects could be loaded before the

lighting was defined, as these are independent elements.

Sequence-independence increases the flexibility of

functions, as a wider range of results may be produced

using difference combinations of calls to the subroutines.

Also, less information needs to be taken into account

when developing a section of code, which may simplify

systems development.

Sequence dependence is reduced when functions are

directly mapped. This results in the same results or

process being performed, regardless of previous actions.

Subroutines that operate in this way can be called in any

order, and would produce the same result for the

specified input.

Specifically, the use of static and global variables in

subroutines can introduce sequence dependence.

This arises due to the fact that the result of the subroutine

may be related to external conditions, or to previous calls

to the subroutine.

220

This may result in a different order of execution of the

same subroutine calls producing a different result.

Sequence independence can be implemented by

separating the definition of object and attributes from the

processing steps involved, or by checking that any pre-

requisite functions have already been run.

4.8.3.1. Just-In-Time Processing

Sequence independence can be implemented using a

“just-in-time” approach to processing and calculation.

Rather than performing each processing step as it is

called, a set of attributes could be defined after each

function call.

When the final function call is performed, such as the

subroutine to display the image, the entire processing is

performed in order using the attributes that were

specified.

This approach separates the internal processing order

from the order of external calls to the subroutines.

The model used in this approach is an attribute and data

object model, rather than a process and transformation

model.

In this model, each call to the subroutines defines a set of

attributes, rather than executing a process.

For example, the generation of a graphics image could

involve loading wireframe structures, mapping textures

to objects, applying lighting and generating the image.

One approach would be to call a subroutine for each

stage in the process. However, these operations may

need to be performed in order.

221

Another approach would be to implement similar

subroutine calls that simply defined the objects, textures

and lighting, with all the processing being performed

when the final “generate image” subroutine was called.

This second approach would allow the calls to be

performed in any order.

4.8.3.2. Pre-requisite Checking

Another approach involves each subroutine checking that

any pre-requisite subroutines had been run.

When each process is performed, a flag could be set to

indicate that the data had been updated.

When a subroutine commences it could check the flags

that were related to any pre-requisite functions, and call

the relevant subroutines before performing its own

processing.

This approach avoids making assumptions about

previous events, and would allow the subroutine to be

used in a wider range of external circumstances.

When all subroutines were implemented this may, the

sequence of calls in the main routine could be replaced

with a single call to the final routine, which would lead

to a backward-chaining series of subroutine calls,

followed by a forward chain of execution.

4.8.4. Direct Mapping

A subroutine or interface function is directly mapped if

the operations that are performed are completely

specified by the input parameters.

222

This occurs when the results of the subroutine are not

affected by previous calls to the subroutine or by data in

other parts of the system.

Direct mapping can be implemented by passing all the

data that a subroutine uses as parameters to the

subroutine.

Directly mapped subroutines are sequence independent,

as their results are not affected by previous operations.

This enables directly mapped subroutines to be called in

any combination and in any order.

Indirect mapping is created by storing internal static data

that retains its value between calls to the subroutine, or

by accessing data outside the subroutine.

For example, the subroutine “list_next_entry()” is not

directly mapped, as this subroutine returns the next item

in the list after the previous call to the subroutine.

In contrast, the subroutine “list_next_entry(

current_entry)” is directly mapped, and would return the

same result for any given value of “current_entry”,

regardless of previous operations.

Direct mapping can increase functionality by enabling

calls to the subroutine from different code sections to

overlap without conflicting, as well as introducing

sequence independence.

For example, the first version of the subroutine allows

only one pass through the list at a particular time.

However, using the directly mapped version, multiple

independent overlapping scans of the list could be

performed by different sections of the code, without

conflicting.

A reduction in execution speed could occur when a

search is required to locate the current position, such as

the “current_entry” variable in the previous example.

223

This problem can be reduced by recording an internal

static cache value of the previous call to the subroutine,

and using that value if the parameter specifies the

previous call as the current position. This does not

introduce sequence dependence or indirect mapping, as

the static variable is only used to increase execution

speed and does not affect the actual result.

Another example concerns a subroutine

“get_current_screen_field()”, which returns the text

value that is held in the current screen field.

In this case the indirect mapping is not due to static data

relating to previous calls to the subroutine, but is due to

accessing a variable outside the subroutine.

This code could be re-written as “get_screen_field(field

)”, in which case the function is direct-mapped and could

be used to retrieve the value of any field on the screen.

Subroutines written in a directly mapped way may be

more flexible and easier to use that subroutines that

include indirect mapping.

Interactions between different sections of the code are

also reduced when subroutines are directly mapped.

4.8.5. Defensive Programming

Defensive programming is a coding style that attempts to

increase the robustness of code by checking input data,

and by making the minimum number of assumptions

about conditions outside the subroutine.

Robust code is code that responds to invalid data by

generating appropriate error conditions, rather than

continuing processing and generating invalid results, or

preforming an operation that leads to a system crash,

such as attempting to divide a number by zero.

224

Defensively coded routines may also check their own

output before completing. For example, a process that

produces figures may check that the figures balance to

other figures or are consistent in some other way.

Checking output results does not affect the robustness of

the individual routine against external problems however

this approach may increase robustness throughout the

system.

4.8.5.1. Input Data

Checking input parameters may involve two issues.

Values can be checked to ensure that incorrect operations

are not performed, such as attempting to access a null

pointer or processing a loop that would never terminate.

Also, checks can be performed to detect errors, such as

negative numbers in a list that should not contain

negative numbers, or weights that do not sum to 1.

When lists are scanned and calculations are performed,

checks of existing figures can also be made while other

processing is being performed.

4.8.5.2. Assumptions about Previous Events

Checking previous operations and conditions outside the

subroutine can be done by checking flags that are set by

other processes.

When a pre-requisite process has not been performed, the

subroutine can run the relevant function before

continuing.

225

4.8.6. Segmentation of Functionality

4.8.6.1. Functional Applications

In many systems the code can be grouped into several

major areas.

This may include the user interface code, calculation

code, graphics and image generation, database updating

etc.

In functional applications such as software tools,

separating the code into major areas may reduce the

number of interactions between different sections of the

code.

This may lead to a system that is more flexible and easier

to maintain, as each section performs independent

functions and can be modified without the need to refer

to other parts of the system.

4.8.6.2. Process-Driven Applications

In process-driven systems such as data processing

applications, separating the code by function instead of

process may result in an internal structure that is

completely different from the structure of the application

itself.

For example, the application may consist of several

functional modules, such as an accounting module, an

administration module, a product reporting module etc.

Using a process-driven code structure, each application

module would contain the code relating to that

application module, including the user interface code,

calculations, database updating etc.

However, if these functions were grouped internally into

separate sections, this could result in a significant

226

reduction in the total code size and reduce

inconsistencies.

This process would also result in a system that would

provide facilities to enable new application modules to

be developed with a minimum amount of code. In

contrast, the development of new process-orientated

modules is not affected by the development of previous

modules.

4.8.6.3. Implementation

Separating functions can be done by creating major

sections within the code that contain related functions.

These could be accessed through a defined set of

subroutine calls and operations.

These modules could be extended to create processing

engines. For example, a calculation engine may perform

a range of general calculation and numeric processing

operations. The engine would be accessed through a

clearly defined interface of data and functions, and may

be called directly or may execute independently of the

main program.

Each section only remains independent while it does not

contain processing that relates to another section of the

system.

For example, a calculation section would not contain

input/output processing, such as screen, file or printing

operations.

This approach allows the code section to be used as an

independent unit.

Portability between different systems is also improved

with the approach.

227

Maintenance and debugging of a code sections may also

be simpler when the section contains only one type of

related operation.

Additionally, modules such as calculation engines and

graphics facilities developed in this way could also be

used with other projects.

4.8.7. Subroutines

4.8.7.1. Selection

In general, code is simpler and clearer when a collection

of small subroutines is used, rather than a number of

larger subroutines.

Where a loop contains several statements, these may be

split into a separate subroutine. This results in producing

two subroutines. One subroutine contains looping but no

processing, while the other contains processing and no

looping.

When a large subroutine contains separate blocks of code

that are not related, each major block could be split into a

separate subroutine.

When code that performs a similar logical operation

exists in several parts of a system, this could be grouped

into a single subroutine

For example, different sections of code may scan and

update parts of the same data structure, or perform a

similar calculation.

The variations in the process could be handled by

passing flags to the subroutine, or by storing flags with

the data structure itself, so that the subroutine could

automatically determine the processing that was

required.

228

Code that was similar by coincidence but performed

logically independent operations, such as calculation

routines for two independent products, should not

generally be combined into a single subroutine.

4.8.7.2. Flags

Subroutines are more general if they are passed flags and

individual options, rather than being passed data and then

testing conditions directly.

For example, a subroutine may be passed a Boolean flag

to specify an option, such as sorting a list in ascending or

descending order.

Other options could also be passed. For example, the key

of a data set could be passed, rather than an entire

structure type that contained the key as one data item.

Using flags and options allows the subroutine to be

called in different ways from different parts of the code.

Also, using flags allows the subroutine to perform

different combinations of processing, in contrast to

checking the data directly, which may result in a fixed

result dependant on the data.

Interactions with different parts of the code may also be

reduced.

4.8.8. Automatic Re-Generation

In some cases a set of input data and calculated results

may be stored in a data structure.

If the input data is changed, the calculated results may

need to be re-generated.

229

Unnecessary re-calculation can be avoided by including

a status flag within the data structure.

When the input figures are changed, the status flag is set

to indicate that the calculated results are now invalid.

When a request is made for a calculated figure, the status

flag is checked. If the flag is set, then a recalculation is

performed and the flag is cleared.

This approach enables multiple changes to the input data

to be made without generating repeated re-calculations,

and allows multiple requests for calculated results to be

made without requiring multiple re-calculations.

This approach can only be used when the calculated

results are accessed via subroutines, rather than being

accessed directly as data variables.

230

4.8.9. Code Design Issues Summary

Design Issue Description

Interactions Interactions between distant parts of a

program, through global variables,

static variables or chains of subroutine

calls, can make programs more difficult

to debug and modify.

Localisation Grouping processing relating to a single

data item or structure into a small

section of code may make code easier

to read and modify.

Sequence

Dependence

Subroutines that can be called in any

order, and which produce the same

result regardless of previous events,

may be more flexible than alternative

approaches.

Pre-requisite

checking

Checking within a subroutine that

previous functions have been

performed, and executing them if

necessary, may increase the flexibility

and generality of a subroutine.

Direct Mapping Subroutines that produce a result that is

completely specified by their

parameters can make program

development easier and may reduce

bugs caused by unexpected interactions.

Defensive

Programming

Subroutines may be more robust when

they check the parameter data that is

passed, check external data that is used,

and make a minimum number of

assumptions about previous events and

current conditions.

231

Segmentation of

functionality

Separating major

components of a system

into separate sections

may lead to easier

program development

and more reliable

systems, as each

component can be

developed

independently. Clear

interfaces may be useful

in designing general

functional components.

Subroutine

Selection

Systems composed of a

large number of small

subroutines may be

easier to interpret,

debug and modify that

systems composed of

several large and

complex subroutines.

Several small

subroutines may be

clearer than a single

complex subroutine.

Subroutine

Parameters

Subroutines may be

more general, and

interactions may be

reduced, when

subroutines are passed

flags and options, rather

than data used for

internal conditions.

Data used in internal

conditions causes

interactions with distant

code and results in a

fixed outcome for an

individual data

condition.

232

233

4.9. Coding

Coding is the process of writing the program code.

4.9.1. Development of Code

Although a general design may be planned, the direction

that various sections of the code take may not become

apparent until the coding is actually in progress.

Some functions turn out to be more complex and difficult

to implement than was originally expected, while others

may turn out to be considerably simpler.

An initial development of the code could result in

creating a set of medium-sized subroutines to perform

the various functions.

After these are written, the code could be consolidated

by extracting common sections into smaller subroutines.

This process leads to a larger number of smaller

subroutines, and generally clearer and simpler code.

Attempting to predict the useful subroutines in advance

can lead to writing code that is not used. Also, the

structure of the code becomes artificially constrained,

rather than changing in a fluid way as different sections

are re-written to simplify the processing.

This approach applies particularly to function-driven

code, which uses a range of general-purpose functions

and data structures. This approach is less applicable to

process-driven code

234

4.9.2. Robust Code

The reliability of code is determined when it is written,

not during the testing phase.

As code is written, the ideas and structures that are being

implemented are used to form complete sections of code.

This is the time at which the interrelations between

variables, concepts and operations are mentally

combined into a single working model.

Various issues are resolved during this process, such as

the handling of all input data combinations and

conditions, implementing the functions that the code

section supports, and resolving problems with interfaces

to other sections of code.

If coding commences on a different section of the system

while issues remain unresolved, this may lead to

problems occurring at future times.

Robust code would generally respond to invalid data by

generating appropriate error conditions, rather than

continuing program operation and producing invalid

output or attempting an operation that results in a system

crash, such as attempting to divide a number by zero.

4.9.3. Data Attributes Vs. Data Structures

Data in related but different structures can be stored in

separate database tables and structures, or combined into

a single structure and identified separately using a data

variable.

Data structures, code and functions are generally simpler

and more flexible when a data variable is used to identify

separate types of data, rather than creating separate

structures.

235

For example, corporate clients and individual clients

could be stored as separate database tables and program

structures.

However, as these two objects record similar

fundamental data, they could be combined into a single

table.

If a large number of fields apply to only one type, this

can be split into a separate table with a one-to-one

database link. However, when the number of fields is not

excessive, a single table may be the simpler solution.

As another example, creating a several separate tables for

different products would lead to a more complex system

than using a single table, with data fields to identify

product options and calculations.

4.9.4. Layout

The visual layout of code is important. Writing,

debugging and maintain code is significantly easier when

the code is laid out in a clear way.

Clear layout can be achieved with the ample use of

whitespace, such as tabs, blank lines and spaces.

Code written in languages that use control-flow

structures, such as “if” statements, can be indented from

the start of the line by an additional level for each nested

code block.

For example, statements within an “if” statement may be

written with an additional 2, 4 or 8 spaces at the start of

the line, to identify the nesting of the code within the “if”

statement.

Consistency in a layout style throughout a large section

of code leads to code that is easier to read.

236

For example, the following code uses few spaces and

does not indent the code to reflect the changes in control

flow.

 for(i=0;i<max_trees;i++)

 { if(!tree_table[i].

active){

 tree_table[i].usage_count=1;

 tree_table[i].head_node=new node;

 tree_table[i].active=TRUE;}

 queue=queue_head;

 while(queue!=NULL){if(queue->tree==i)

queue->active=TRUE;

 queue=queue->next;

 }

 }

The following code is identical to the previous example,

however it includes additional spaces, uses a consistent

layout style throughout the code, and is indented to

reflect the nesting structure of the code blocks.

 for (i=0; i < max_trees; i++)

 {

 if (! tree_table[i].active)

 {

 tree_table[i].usage_count= 1;

 tree_table[i].head_node = new

node;

 tree_table[i].active = TRUE;

 }

 queue = queue_head;

 while (queue != NULL)

 {

 if (queue->tree == i)

 queue->active = TRUE;

 queue = queue->next;

 }

 }

237

4.9.5. Comments

A comment is text that is included in the program code

for the benefit of a human reader, and is ignored by the

compiler.

Comments are useful for adding additional information

into the code. This may include facts that are relevant to

the section of code, and general descriptions of the

processes being performed.

When a subroutine contains a large number of individual

statements, comments can be used to separate the

statements into related sections.

The following example contains two comments that add

information that may not be readily determined from

reading the code

 ‘ A year is a leap year if it is divisible by four,

is not

 ‘ divisible by 100, or is divisible by 400

if (year mod 4 = 0 and year mod 100 <> 0) or year mod

400 = 0) then

 is_leap_year = true

else

 is_leap_year = false

end

 ‘ reduce value by 1 day’s interest for February 29th

if is_leap_year then

 value = value / (1 + rate/365)

end

238

The following code illustrates the use of comments to

separate groups of related statements

 subroutine process_model()

 ‘ intialse graphics engine and load

model

 graphics.initialise

 graphics.allocate_data

 read_model graphics, model

 ‘ update graphics image

 graphics.define_lights light_table

 grphics.define_viewpoint config_date

 grphics.display

 ‘ generate report

 process_report_data

 print_report

 end

4.9.6. Variable Names

The choice of variable names can have a significant

impact on the readability of program code.

Variable names that describe the data item, such as

“curr_day” and “total_weights” add more information

into the code than variable names that are general terms

such as “count” or “amount”.

Single letter variable names are sometimes used as loop

variables, as this simplifies the appearance of the code

239

and allows the reading to focus on the operations that are

being performed.

For example, the letters “i” and “j” are sometimes used

as loop variables. This usage follows the convention used

in mathematics and early versions of Fortran, where the

letters “i”, “j” and “k” are used for array indexes.

This particularly applies to scanning arrays that are used

to store lists of data.

In other cases, the use of a full name for a loop variable,

such as “curr_day” or “mesh” may lead to clearer code.

This may apply when the items in an array are accessed

directly and the index value itself represents a particular

data item.

Some coding conventions add extra letters into the

variable name, or change the case, to describe the data

type of a variable or its scope.

For example, “iDay” may be an integer variable, and the

uppercase letter in “Print_device” may indicate that the

variable is a global variable.

Constants may be identified with a code or with a case

change, such as the use of uppercase letters for a constant

name.

Using different variable names that differ only by case or

punctation, such as “ListHead”, “listhead” and

“list_head” can make reading and interpreting code more

difficult.

Ambiguous names can also result in code that can be

difficult to interpret.

For example, the word “output” can be both a noun and a

verb. The name “report_output” could mean “output

(print) the report”, or “this is the report output”.

240

In some cases, variables at different levels of scope may

have the same name. For example, a local variable may

be defined with the same name as a global variable.

In these cases, the name is taken to refer to the data item

with the tightest level of scope.

Reading the code may be more difficult in these cases as

an individual name may have different meanings in

different sections of the code.

4.9.7. Boolean Variable Names

The names of Boolean variables may be easier to read if

the word “not” is not included within the variable name,

and if the value is stated in the positive form rather than

the negative form.

This avoids the use of double-negatives in expressions,

which involves reversing the description of the variable

to determine the actual condition being tested.

For example, the flag “valid” could also be named

“not_valid”, “invalid” or “not_invalid”. Depending on

the condition, the other forms may be less clear that the

simple positive form.

4.9.8. Variable Usage

Code may be easier to read when there is a one-to-one

correspondence between a data concept and a data

variable.

In general, a single data variable should not be used for

two different purposes at different points within the code.

241

Also, two different data variables should not be used to

represent the same fundamental data item at different

points in the code.

This issue relates to usage within a common level of

scope, such as local variables within a subroutine, or

module-level variables within a module.

For example, the items in a list may be counted using

one variable, and this value may then be assigned to a

different variable for further calculations.

In another case, a variable may be used to store a value

for a calculation in an early part of the subroutine. The

same variable may then be used to store an unrelated

value in a later part of the code.

In these cases, the code may be misinterpreted when

future changes are made, leading to an increased chance

of future bugs.

4.9.9. Constants

In most languages, a fixed number or string within the

code can be defined as a “constant”.

A constant is a name that is similar to a variable name,

but has a fixed value.

The use of constants allows all the fixed values to be

grouped together in a single place within the code. Also,

when a constant is used in several places, this ensures

that the same value is used in each place, and avoids

possible bugs where one value is updated but another is

not.

Storing constants within the program code is known as

hard-coding.

242

This reduces the flexibility of the code, as a program

change is required whenever a constant value is changed.

The flexibility of a system may be increased if constants

are stored in database records or configuration files.

Alternatively, in some cases the use of a constant value

can be replaced by variable values or flags.

For example, a constant value that specified a particular

record key could be replaced by a flag on the record that

indicated that a particular process should occur.

As another example, a constant number, such as a

processing value, could be replaced by a standard

database field containing a variable value.

Constants are useful for values that are fixed or change

rarely, such as the days of the week, scientific constants,

or a product name.

Constants are also by used for fixed values that are used

in programming constructions, such as end-of-list

markers, codes used in data transmission, intermediate

code etc.

The name of the constant refers to the meaning of the

data, not its value. Two values that were the same by

coincidence, such as the size of two different array types,

should be defined as two separate constant values.

Generally a hard-coded value should not be included in a

program to represent data that could be independently

changed, such as the key of a database record. Including

constants such as this would decrease the flexibility of

the program, and would lead to incorrect processing if

the data value was changed.

When processing applied to a certain record, this could

be specified by including an option flag on the record

itself.

243

4.9.10. Subroutine Names

Subroutine names may consist of several words. When

the subroutine name contains a noun and a verb, this can

be listed in either order.

For example, the following code defines variables in the

verb-noun order.

 define_report

 format_report

 print_report

This usage follows the usual sequence of a sentence. The

opposite form, in the noun-verb order, can also be used

 report_define

 report_format

 report_print

This approach groups related functions together, and

highlights the data object rather than the function.

Code written in this way has a clearer separation between

the individual objects and functions. This approach is

used in object orientated programming.

4.9.11. Error Handling

Errors occur when an invalid condition is detected within

a section of program code.

This may be due to a program bug, or it may be the result

of the data that has been used in the calculation or

process.

244

Errors at the coding level include problems that lead to

system crashes or hanging, and problems with data and

data structures.

System problems include attempts to divide a number by

zero, loops that never terminate, and attempting to access

an invalid pointer or an object that has not been

initialised.

Data problems include lists that are empty when they

should contain data, data within a structure that contains

too many or too few entries, or an incorrect set of values

for the process being performed.

At the process level, errors may include input data that is

invalid, missing data, and input data that is valid but

produces results that are outside expected ranges.

4.9.11.1. Error Detection

Errors can be detected by using error checking code.

These statements do not alter the results of the process,

but are included to detect errors at an early stage.

This is used to assist in the debugging process, and to

prevent incorrect data being stored and incorrect results

from being produced.

Error detection can involve checking data values at

points in the process for values that are negative, zero, an

empty string, or outside expected ranges.

At the process level, checks could include performing

reverse calculations, scanning output data structures for

invalid values and combinations, and checking the

relationship between various variables to ensure that the

output values are consistent with each other and with the

input values.

245

Error detection code may add complexity and volume to

the code and slow execution.

However, this code may also simplify debugging and

detect errors that would otherwise lead to incorrect

output.

Adding permanent error checks that are simple and

execute quickly can be used to increase the robustness of

the code.

4.9.11.2. Response to Errors

When an error condition is detected, various actions can

be taken.

Errors within general subroutines and functions may be

handled by returning an error status condition to the

calling routine.

Alternatively, in some languages and situations an

exception is generated, and this exception results in

program termination unless it is trapped by an error-

handling routine. The error handling routine is

automatically called when the exception condition arises.

When the error occurs within a main processing function,

an error message may be displayed for an interactive

process, or logged to an error log file for a batch process.

Following the error, the process may continue operation

and produce a partial result, or the current process may

terminate.

4.9.11.3. Error Messages

246

Error messages may include information that is used in

the debugging process.

Information that can be included in an error message

includes the following points:

• An error number.

• A description of the error.

• The place in the program where the error

occurred.

• The data that caused the error.

• Related major data keys that can be used to

locate the item.

• A description of the action that will be taken

following the error.

• Possible causes of the error.

• Recommended actions.

• Actions to avoid the error if the data is actually

correct.

• A list or description of alternative data that

would be valid.

For example

“ERROR P2345: A negative policy contribution

of $-12.34 is recorded for policy number

0076700044 on 12/03/85. Module

PrintStatement, Subroutine CalcBalance”

“ERROR 934: Model “ShellProfile” has no

mesh type. This error may occur if the

conversion from version 3.72 has not been

completed. If this model is a continuous-surface

model, the option “continuous surface” in the

model parameters screen can be selected to

enable correct calculation. Module RenderMesh,

Subroutine MeshCount”

247

In some cases, help information is included with an

application that provides addition information regarding

the error condition.

For the programming perspective, the key elements of an

error message are a way to identify the place in the code

where the error occurred, and information that would

enable the data that was being processed to be identified.

This particularly applies to general system errors such as

divide-by-zero errors.

4.9.11.4. Error Recovery

In some processes a significant number of errors may be

expected.

This occurs, for example, in compilers while compiling

program code, and in data processing while processing

large batches of data.

In these cases, ending the process when the first error is

detected could result in repeated re-running of the

process as each error is corrected.

Error recovery involves taking action to continue

operation following an error condition, to generate other

results or generate partial output, and to detect the full

list of errors.

During program compilation, a compiler will generally

attempt to process the entire program and produce a list

of all compilation errors within the code.

When an error is detected, an error message may be

logged to a file. Depending on the situation, error

recovery may involve ignoring the error and continuing

operation, terminating part of a process and continuing

other parts, using a default value in place of an invalid

248

one, or artificially creating data to substitute for missing

information.

4.9.11.5. Self-Compensating Systems

A self-compensating system is a system that

automatically adjusts the system to correct existing

errors.

This can be done by calculating the expected current

position, the actual current position, and creating records

to adjust for the difference.

This is in contrast to a process that simply performs a

fixed process and ignores other data.

For example, a monthly fee process may create monthly

fee transactions. If a previous transaction is incorrect,

this will be ignored by the current month process.

However, if the monthly process calculated the year-to-

date amount due, and the year-to-date amount paid, and

then created a transaction the represent the difference,

this approach would adjust for the existing incorrect

transaction.

Separate values could also be created for the expected

amount and the unexpected adjustment.

4.9.12. Portability

Portable code is written to avoid using features that are

specific to a particular compiler, language

implementation, or operating environment.

Code that is written in a portable way is easier to convert

to different development environments.

249

Also, some portability issues affect the clarity and

simplicity of the code, and a section of code written in a

portable way may be easier to read and maintain than an

alternative section that uses implementation-specific

features.

4.9.12.1. Language Operations and Extensions

Many compilers support extensions to the standard

language, through the implementation of additional

keywords and operations.

Some language operations and parameters are not

specified as part of the language definition. This may

include the size of different numeric data types, the result

of certain operations, and the result of some input/output

operations.

Code that is dependant on unspecified features of the

language, or that uses compiler-specific extensions to the

language, may be less portable than code that avoids

these features.

Some languages do not have a single definition, and

significant differences in the language structure may

occur between implementations. In these cases a subset

of common features across major implementations could

be used to reduce portability problems.

4.9.12.2. External Interfaces

User interface structures, file and database structures and

printing operations may all vary from operating system

to operating system.

In general, conversion to alternative environments may

be simpler when related processes are grouped together.

For example, all the user interface code, including calls

250

to operating system functions, could be grouped into a

user interface module.

4.9.12.3. Segmentation of Functionality

In many systems the code can be grouped into several

major sections.

One section may be the user interface code, which

displays screens, menus, and handles input from the user.

Other major sections may include a set of calculation and

processing functions, and formatting and printing code.

This would increase portability by enabling one section

to be modified for an alternative environment, while the

other sections remain unchanged.

However, this approach would not apply to an event-

driven system that used a complex user interface design,

with small processing steps attached to various functions.

4.9.13. Language Subsets

Using a subset of a language involves using a set of

simple fundamental operations. This would involve

avoiding alternative operations, and complex or little-

used language features.

Code written using a subset of the full language may be

simpler and easier to read than code that uses functions

from previous versions of the language and little-used

language features.

For example, a language may support several looping

statements that provide similar functionality. Writing

code in a language subset may involve using one of the

loop constructs throughout the code.

251

4.9.14. Default Values

A default value is a value that is used when a data item is

unknown or is not specified.

Default values can be used to avoid specifying multiple

options for a particular process. For example, the default

values for each option may be specified in a database

record or configuration file. These default values would

be used unless a specific option was overridden by

another value.

Default overrides may occur at multiple levels. For

example, a default value could be specified for an option

across an entire system, which could be overridden by a

separate default value for a particular group of records,

which in turn could be overridden by a specific value in

an individual record.

The defaults at each level could be independently

changed.

When a default override is removed, the actual value

used returns to the default value of the previous level.

The term default value is also used in the context of an

initial value. This is an initial value placed in a data

record, data structure or screen entry field.

However, when initial values are changed the previous

value is lost, unlike default values which can be restored

by removing the override value.

4.9.15. Complex Expressions

252

In some cases the clarity of a complex expression can be

improved by breaking the expression into sub-parts and

storing each part in a separate variable.

This allows the variable names to add more information

into the code, and identifies the structure of the

expression.

For example,

total = (1 + y)^(e/d)*(c*(1–(1+y)^-n)/y +

fv/((1 + y)^n))

This code could be split into several components to

clarify the structure of the expression.

 part_period_discount = (1 + y) ^ (e/d)

 annuity = (1 – (1 + y)^(-n))/y

 face_value_pv = fv / (1 + y)^n)

 total = part_period * (c * annuity +

face_value_pv)

Adding additional brackets into a complex expression

may also clarify the intended operation.

4.9.16. Duplicated Expressions

When a particular expression occurs more than once

within a program, it can be placed in a separate

subroutine.

This may avoid problems when one version of the

expression is changed but the other version is not.

253

These types of bugs can remain undetected for long

periods of time, because the system may continue to

operate and appear to be working correctly.

For example

 if sample_type = “X” and result_value <

0.35 then

 print_data

 end

 …

 …

 …

 if sample_type = “X” and result_value <

0.33 then

 include_in_averages

 end

In this example, the second expression is further through

the code. The first expression prints records with a value

of less than 0.35, while the second expression calculates

the average of all records with a value of less than 0.33.

The intention may have been for this to represent the

same expression, and the printed average to be the

average of the printed records.

This bug would not affect system operation, and would

not be detected unless the printed figures were re-

calculated manually to check the “average” figure.

Writing a subroutine to replace these expressions and

implement the expression in a single place would avoid

this problem.

Also, the fixed number could be replaced with a constant

such as RESULT_TOLERANCE, which adds

information into the code and would allow this constant

to be used in other places within the code.

Where two expressions were the same by coincidence,

but they had a different meaning, they should not be

combined into a common subroutine.

254

4.9.17. Nested “IF” statements

Nested “if” statements can be difficult to interpret.

In general, a series of separate “if” statements may be

easier to read and interpret than a set of nested “if”

statements.

For example, the following code determines whether a

year is a leap year, using nested “if” statements.

 if year mod 4 = 0 then

 if year mod 100 = 0 then

 if year mod 400 = 0 then

 is_leap_year = true

 else

 is_leap_year = false

 end

 else

 is_leap_year = true

 end

 else

 is_leap_year = false

 end

255

This code can be re-written as a series of separate “if”

statements. In this case the control flow may be clearer

than the code that uses a nested structure.

 is_leap_year = false

 if year mod 4 = 0 then

 is_leap_year = true

 end

 if year mod 100 = 0 then

 is_leap_year = false

 end

 if year mod 400 = 0 then

 is_leap_year = true

 end

This particular example could also be re-written as a

single condition, as shown in the following code

 if (year mod 4 = 0 and year mod 100 <> 0)

or

 year mod 400

= 0 then

 is_leap_year = true

 else

 is_leap_year = false

 end

4.9.18. “Else” conditions

In most cases, the “else” part of an “if” statement is

intended to apply to “if the condition is not true”.

However, in other cases the intention is for the code to

apply “for the other value”.

256

For example, a particular numeric variable may generally

have a value of 1 or 2. The following code is an example.

 if process_type = 1 then

 run_process1

 else

 run_process2

 end

In this example, if the value of “process_type” is not 1,

then it has been assumed to be 2. However, due to a bug

in the system or a misunderstanding of meaning and

values of variable “process_type”, it may have a different

value. This can be checked, as in the following example.

 if process_type = 1 then

 run_process1

 else

 if process_type = 2 then

 run_process2

 else

 display_message “Invalid value “ &

process_type & “for

variable

process_type in

run_process”

 end

This code may detect existing problems, or detect

problems that arise following future changes.

4.9.19. Boolean Expressions

4.9.19.1. Conditions

If the variable “sort_ascending” is a Boolean variable,

i.e. it can only have the values True or False, then the

following two lines of code are equivalent

257

 if sort_ascending = true then

 if sort_ascending then

The second form is clear when a Boolean variable is

used, and the “= True” is not necessary.

However, in some languages the second form of the

expression can also be used with numeric variables.

In this case the code may be clearer if the actual

condition is included.

For example,

 if record_count then

 if record_count <> 0 then

In this case the variable “record_count” records a

number, not a Boolean value. In languages where “true”

was defined as non-zero, the two expressions may be

equivalent.

However, this simply relies on the method that has been

used to implement Boolean expressions, and the second

form may be clearer as it specifies the condition that is

actually being tested.

In languages that use strict type checking, the first form

may generate an error, as the expression has a numeric

type but the “if” statement uses Boolean expressions.

258

4.9.19.2. Integer Implementations

In some languages, Boolean variables are implemented

as integers within the code, rather than as a separate type.

The True and False values would be numeric constants.

Zero is generally used for False, while True can be 1, -1,

or any non-zero number depending on the language.

In languages where Boolean values are implemented as

numbers, problems can arise if numeric values other than

True and False are used with variables that are intended

to be Boolean.

For example, if False is zero and True is 1, but any non-

zero value is accepted as true, the following anomalies

can occur.

 Value Condition Outcome Reason

 1 is false no 1 is not equal to 0

 1 = True yes 1 is equal to 1

 1 is true yes 1 is non-zero

 2 is false no 2 is not equal to 0

 2 = True no 2 is not equal to 1

 2 is true yes 2 is non-zero

In this case, “2” would match the condition “is true”, as

is it non-zero, but would not match the condition “=

True”, as it is not equal to 1.

These problems can be reduced if numeric and Boolean

variables and expressions are clearly separated.

4.9.20. Consistency

Consistency in the use of language features may reduce

the chance of bugs within the code.

259

For example, arrays are commonly indexed with the first

element having an index of zero or one. In some

languages this convention is fixed, while in others it can

be defined on a system-wide basis or when an individual

array is defined.

If some arrays are indexed from zero and some are

indexed from one, this may increase the change of bugs

in the existing system, or bugs being introduced through

future changes.

For example, this code uses the convention of storing the

values starting with element zero.

 for i = 0 to num_active - 1

 total = total + current_value[i]

 end

The following code uses the convention of storing values

starting with element one.

 for i = 1 to num_active

 total = total + current_value[i]

 end

If the wrong loop type was used for the array, one valid

element would be missed, and would be replaced with

another value that could be a random, initial or previous

value.

This may lead to subtle problems in processing, or create

general instability and occasional random problems.

When maintenance changes are made to an existing

system, the chance of errors occurring may be reduced if

the language features are used in a way that is consistent

with the existing code.

260

4.9.21. Undefined Language Operations

In many languages, there are combinations of statements

that form valid sections of code, but where the result of

the operation is not clearly defined.

For example, in many languages the value that a loop

variable has after the loop has terminated is not defined.

The following code searches an array for a word and

adds the word into the array at the first empty space if it

is not found.

 subroutine add_word(word as string,

 substring_found as

boolean)

 define i as integer

 define found as boolean

 found = false

 for i = 0 to num_words – 1

 if word_table[i] = word then

 found = true

 end

 if string_search(word_table[i],

word) then

 substring_found = true

 end

 end

 if not found then

 word_table[i] = word

 num_words = num_words + 1

 end

 end

While the value of the variable “i” increases from 0 to

“num_words – 1” on each iteration through the loop, in

many languages the value of “i” is not clearly defined

after the loop has terminated. It may be equal to the last

261

value through the loop, the last value plus one, or some

other value.

Most compilers would not detect this problem, as

technically this code is a valid set of statements within

the language.

This problem could be avoided by using the variable

“num_words” after the loop instead of the loop variable

itself.

Calling subroutines from within expressions can also

result in undefined operations. For example, in some

cases the order in which an expression is evaluated is not

defined, and when an expression contains two subroutine

calls, these calls could occur in either order.

In the case of Boolean expressions, if the first part of an

AND expression is false, then the second part does not

need to be evaluated, as the result of the AND expression

will be false, regardless of the result of the second

expression.

In these cases, languages may define that the second part

will never be executed, that the second part will always

be executed, or the result may be undefined.

262

4.10. Testing

Testing involves creating data and test scenarios, calling

subroutines or using the system, and checking the results.

Testing is done at the level of individual subroutines,

complete modules, and an entire system.

Testing cannot repair a system that is poorly designed or

coded. The reliability of a system is determined during

the design and coding stages, not during the testing stage.

4.10.1. Execution Path Complexity

The numbers of possible paths that program execution

can follow is extremely large.

For example, the following code scans an array of 1000

items, and prints all the items that have a value of less

than one.

 for i = 0 to 999

 if table[i] < 1 then

 print table[i]

 end

 end

The number of possible combinations of output is 21000,

which is approximately 107 followed by 299 zeros.

In large systems, only a small fraction of the possible

program flow paths will ever be executed in the entire

life of the system operation.

263

4.10.2. Testing Methods

4.10.2.1. Function Testing

Testing individual functions involves testing individual

subroutines and modules as each function is developed.

Debugging is easier and more reliable if testing is done

as each small stage is developed, rather than writing a

large volume of code and then conducting testing.

Function testing is conducted by writing a test program

or test harness.

This may be a separate program, or a section of code

within an existing system. The testing routine generates

data, calls the function being tested, and either logs the

results to a file or checks the figures using an alternative

method.

4.10.2.2. System Testing

System testing involves testing an entire system. This is

done by creating test data, running processes and

functions within the system, and checking the results.

System testing generally results in the production of a list

of known problems. The actual error or outcome in each

situation is described, along with the data and steps

required to re-produce the problem.

When a range of problems have been fixed, a new test

version of the system can be released for further testing.

4.10.2.3. Automated testing

264

Automated testing involves the use of testing tools to

conduct testing.

Testing tools are programs that simulate keystrokes

entered by the user, check the appearance of screen

displays to detect error messages, and log results.

This process is particularly useful when changes are

made to an existing system. A set of results can be

generated before the change is made, and then

automatically re-generated after the change. This method

can be used to check that other processes have not been

altered by the systems changes.

Automated testing can also be conducted by altering the

system to log each keystoke to a file, and then re-reading

the file and replaying the keystokes automatically.

4.10.2.4. Stress Testing

Stress testing involves testing a system with large

volumes of data and high input transaction rates. This is

done to ensure that the system will continue to operate

normally with large data volumes, and to ensure that the

response times would be within acceptable limits.

Stress testing can be done by generating a large volume

of random or sequential data, populating the database

tables, and running the system processes.

Stress testing can also be done with internal data

structures. For example, a testing routine for testing a

general set of binary tree functions, or a sorting module,

could create a large volume of data, insert the data into

the structure, and call the functions that operate on the

data structure.

265

4.10.2.5. Black Box Testing

Black box testing involves testing a system or module

against a definition of the function, while ignoring the

internal structure of the process.

This can be a useful initial test, as the testing is done

without preconceived ideas about the processing.

However, due to the large number of possible paths in

even small sections of code, it is not possible to check

that the output results would be correct in all

circumstances.

Test cases that take into account the structure and edge

cases in the internal code are likely to detect more

problems that purely black box testing.

4.10.2.6. Parallel Testing

In some cases, an alternative system is available that can

perform similar functions to the system being tested.

This may be an existing system in the case of a system

redevelopment, a temporary system, or an alternative

system such as a commercial system that provides

related functions.

Parallel testing can be done by loading the same set of

data into both systems and comparing the results.

The results should also be checked independently, to

avoid carrying over bugs from a previous system into a

new system.

4.10.3. Test Cases

266

4.10.3.1. Actual Data

Actual data is derived from previous systems, manual

keying, uploading from external systems, and the

existing system itself when changes are being made.

Tests conducted on actual data can be used to generate a

set of known results. These results can then be re-

generated and compared to the previous data after

changes have been made. This process can be used to

check whether existing functions have been altered by

changes made to the system.

4.10.3.2. Typical and Atypical Data

Typical data is a set of created data that follows usual

patterns.

Also, a range of unusual data combinations can also be

created to test the full functionality of the system.

Typical data is useful in testing processing, as a full set

of standard results will generally be generated. This may

not occur with unusual cases that are valid system inputs,

but do not result in a full set of processing being

performed.

Testing generally covers the full range of possible data

and functions, and focuses on unusual and atypical cases.

Problems with common cases may appear relatively

quickly, while reducing long-term problems involves

checking scenarios that may not appear until some time

into the future.

4.10.3.3. Edge Cases

267

Edge cases involve checking the significant points within

code or data.

This may include values that result in a change in

calculation output, or cases that are different from the

next and previous value, such as the last record in a file.

For example, in a calculation the altered after one year,

testing could be done using periods of 364, 365, 366 and

367 days.

As another example, in a system for recording details of

learner drivers with a minimum age of 17, testing could

be done with test cases using ages of 16, 17 and 18.

4.10.3.4. Random Data

Random data generation may produce test cases that are

unusual and unexpected, even though they are valid

system inputs.

Testing with random data can be useful in checking the

full range of functionality of a system or module.

Randomly generated data and function sequences may

test scenarios that were not contemplated when the

system was designed and written.

4.10.4. Checking Results

4.10.4.1. System Operation

In some cases direct problems occur when processes or

functions are run. This may include problems such as a

program error message being displayed, a system crash

with an internal error message, printed output not

appearing or being incorrectly arranged, or the program

entering an infinite loop and never terminating.

268

4.10.4.2. Alternative Algorithms

In some cases an alternative method can be used to check

the results that have been generated. This may involve

writing a testing routine to calculate the same result,

using a method that may be simple, but may execute

slowly and may only apply to that particular situation.

When this is the case, the test program can generate a

large number of test cases, call the module being tested,

and check the results that are produced.

4.10.4.3. Known Solutions

When testing is conducted on an existing system, a set of

standard results can be produced. This may include a set

of data that is updated within a database, or a set of

calculated figures that are stored in a file for future

comparison.

This process allows a test program to re-generate the data

or figures, and check the results against the known

correct output.

4.10.4.4. Manual Calculations

The inputs to calculations and the calculation results can

be logged to a file for manual checking. This may

include writing a simple program to scan the file and

check the figures, or it may involve using a program such

as a spreadsheet to check the data and re-calculate the

figures.

Checks can be run against the input data that was

supplied to the system, and also against calculations

within the set of output data, such as verifying totals.

269

4.10.4.5. Consistency of Results

In some cases, the output from a process should have a

certain form, and individual outputs should be related in

certain ways.

In these situations, a test program can be used to check

that the individual results are consistent with each other.

These tests could also be built into the routine itself, and

used to check output as it is produced.

When these tests are fast and simple they can remain in

the code permanently, otherwise they can be activated

for testing and debugging.

For example, a set of output weights should sum to 1, a

sorted output list should be in a sorted order, and the

output of a process that decomposes a value into parts

should equal the original value.

As another example, checking that a sort routine has

successfully sorted a list is a simple process, and

involves scanning the list once and checking that each

item is not smaller than the previous item.

4.10.4.6. Reverse Calculations

Some calculations and processes can be performed in

two directions, with one direction being difficult and the

other straightforward.

For example, the value of “y” in the equation “y = x2 +

x” is determined by calculating the result from the value

of “x”.

However, if the value of “y” is already known but the

value of “x” is required, then the equation cannot be

270

directly solved, and an iterative method for determining

an approximate solution must be used.

In this case, determining the value of “y” may be a

relatively complex process. However, once the result is

known, it can be easy checked by preforming the reverse

calculation and ensuring that the result matches the

original figure.

4.10.5. Declarative Code

Testing declarative patterns involves checking that the

pattern matches the expected set of strings using the

expected set of sub-patterns.

4.10.5.1. Testing of the program

In the case of fact-based systems that involve problem

solving and goal seeking, testing can be conducted to

ensure that facts are not conflicting, and that there are no

unintended gaps in the information that would lead to

undefined results.

A test program can be written to read the pattern or fact

descriptions into an internal data structure for scanning.

A scan of the structure can be performed to check for

loops, multiple paths, and conditions that have undefined

results.

Where a loop occurs, in some cases this may be the

result of a deliberate recursive definition, while in other

cases this may signify an error.

In some cases, two points within a pattern may be

connected by multiple paths.

271

In these cases, an input string may be matched by a

pattern in two different ways. In some applications this

may not be significant, while in other cases this may

indicate that the pattern could not be used in processing.

In some applications, algorithms exist to check particular

attributes of a pattern structure.

For example, an algorithm could be used to check

whether a language grammar was or was not suitable for

top-down parsing.

4.10.5.2. Testing Program Operation

Testing can be performed with input data to ensure that

the correct result is produced.

This may involve using the program with test cases and

checking output.

Traces could be produced of the logic path that was

followed to arrive at the result, or the sub-patterns that

were matched.

4.10.6. Testing Summary

Testing Methods

Function testing Testing individual subroutines,

modules and functions using test

programs.

System Testing Testing entire systems by

running test cases and checking

results.

272

Automated Testing Using automated testing tools to

simulate keying, run processes,

and detect screen and data

output.

Stress Testing Testing applications with large

data volumes and high

transaction rates to check

operation and response times.

Black box testing Testing a function against a

specification, ignoring the

function’s internal structure.

Parallel Testing Testing a system by running an

alternative system using the

same data.

Test Data

Actual Data Data sourced from previous

systems, data uploads, the

existing system itself or manual

keying.

Typical and Atypical

Data

Created data using common data

combinations and also unusual

and unexpected combinations

that are valid system inputs.

Edge Cases Test data that is slightly less,

slightly more, and equal to

values that result in changes in

calculations, or internal program

limits.

Random Data Data created with random values

and combinations, used to

generate large data volumes and

to test the full range and

combinations of system inputs.

273

Detecting Errors

System Operation Problems due to program

crashes, error message, and

incorrect output.

Alternative Algorithms Generating the same result

within a test program using an

alternative algorithm, and

comparing results.

Known Solutions Comparing results with results

generated previously, and

defining a set of input data with

known results generated by a

separate test program.

Manual Calculations Checking results using test

programs and software tools to

re-calculate output results and

check figures within outputs

such as totals.

Consistent Results Checking outputs for

consistency, such as individual

outputs that should balance to

zero or equal another output,

checking that sorted data is

actually sorted etc.

Reverse Calculations Performing a calculation in

reverse to determine the original

figure, and comparing this result

with the actual input value to

verify that the generated result is

correct.

274

Declarative Code

Testing Output Declarative code can be run

against actual test data, and the

output results checked.

Checking program traces Traces of logic and patterns

matched during the operation

with the input data may highlight

problems with the declarative

structure.

Structure Checks Declarative structures can be

read by test programs, and a scan

of the structure can be performed

to check for loops, multiple

paths, and combinations of

events that would lead to

undefined results.

275

4.11. Debugging

Debugging is the process of locating bugs within a

program and correcting the code. A bug is an error in the

code, or a design flaw, that leads to an incorrect result

being produced.

4.11.1. Procedural Code

Before debugging can be performed, a set of steps that

leads to the same problem occurring each time the

program is run must be determined. This step is the

foundation of the debugging process.

Debugging can be done using some of the following

methods

• Reading the code and attempting to follow the

execution path of the particular set of steps.

• Running the program with trace code added to

log the value of variables to a data file, and to

identify which conditions were triggered.

• Stepping through the execution using a

debugger, and pausing at various points in the

execution to examine the value of data variables.

• Adding error checking code into the system to

detect errors at an earlier stage, or to trigger a

message when invalid data or results are

produced.

Some examples of bugs include:

• An error in entering an expression, such as

placing brackets in the wrong place.

• A logic error, where a certain combination of

conditions is not handled correctly.

276

• A mistake in the understanding of a variable;

how it is calculated, and when it is updated.

• A sequence problem, when calling a set of

functions in a particular order leads to an

incorrect result.

• A corruption of memory, due to an update to an

incorrect memory location such as an incorrect

array reference.

• A loop that terminates under incorrect

conditions.

• An incorrect assumption about the concepts and

processes that the system uses.

4.11.1.1. Viewing Data Structures

The contents of entire data structures, such as arrays and

tables, can be written to a text file and then viewed in a

program such as a spreadsheet application. This can be

done by writing subroutines to write the contents of the

data structure to a text file.

This method may highlight obvious problems, such as a

column full of zeros or a large list when there should be

a small list.

Data columns from different data structures can be

compared, and manual calculations can be done to check

that the figures are correct.

4.11.1.2. Data Traces

A log file can be written of the value of variables as the

program runs.

This can be used to view the sequence of changes to

various data variables.

277

Traces may also be used to record which sections of the

code were executed, and which conditions were

triggered.

A Timestamp, containing an update date and time, can be

included on data records. This can be used to identify the

records that were updated during the process.

4.11.1.3. Cleaning & Rewriting Code

In cases where a difficult bug cannot be found, the code

can be reviewed and changes such as adding comments,

minor re-writing of code, changing variable names etc.

can be made.

In situations where the code is in very poor condition,

following a large number of changes, an entire section of

code may be re-written.

This may occur when the control flow within a section of

code is extremely complex, and it is likely that other

problems are also present in the code, as well as the

particular problem being checked.

In this case, the original bug should be located before the

re-writing if possible, as it may represent a design flaw

that is also present in other parts of the system.

4.11.1.4. Internal Checks

Internal checks are code that is added into the system to

determine a point in the process when the results become

incorrect.

This can be used to determine the approximate location

of the problem. This method is particularly useful for

bugs that randomly occur, where a sequence of steps to

reproduce the problem cannot be determined.

278

In some cases, invalid data may occasionally appear in a

database, however re-running the process generates the

correct results.

Including internal checks may trap the error as it occurs,

enabling the problem to be traced.

4.11.1.5. Reverse Calculations

Some calculations can be performed in reverse, to check

that the result is correct. For example, an iterative

method could be used to determine the value of the

variable “x” in the equation “y = x2 + x”, when the value

of “y” is known.

In this example, when the value of “x” has been

calculated, the equation can be used to calculate the

value of “y” and ensure that it matched the original

value.

4.11.1.6. Alternative Algorithms

In some cases an alternative method can be used to

calculate a result and check that it is correct. For

example, this may be a simple method that is slower that

the method being checked, and only applies in certain

circumstances.

4.11.1.7. Checking Results

Some processes produce several results that can be

checked against each other. For example, in process that

decomposes a value into component parts, the sum of the

parts should match the original value.

279

As another example, sorting is a slow process, however

checking that a list is actually sorted can be done with a

single pass of the list.

During testing a sort routine could check the output

being produced to ensure that the data had been correctly

sorted.

4.11.1.8. Data Checking

Data values can be checked at various points in the

program to detect problems. This may include checking

individual variables, and scanning data structures such as

arrays.

Checks can include checking for zero, negative numbers,

numbers outside expected ranges, empty strings etc. Lists

can be scanned to check that totals match individual

entries, and that values are consistent, such as percentage

weights summing to 100%.

4.11.1.9. Memory Corruptions

Memory corruptions can occur in some environments

where a section of memory containing data items can be

overwritten by other data due to a program bug. In some

environments, for example, memory may be overwritten

by using an array index that is larger than the size of the

array.

Some memory corruptions can be detected by using a

fixed number code within a data variable in a structure or

array. When the structure is accessed, the number is

checked against the expected value, and if the value is

different then this indicates that the memory has been

overwritten.

280

A checksum can also be used, which is a sum of the

individual values in the structure. This figure is updated

each time that a data item is modified. When the

checksum is recalculated, a difference from the previous

figure would indicate a memory corruption.

4.11.2. Declarative Code

Debugging declarative code may be difficult, as in many

cases the definitions are recursive, and allow an infinite

number of possible patterns.

For example, the following definition defines a language

of simple calculation expressions.

expression: number

 number * expression

 number + expression

 number - expression

 number / expression

 (expression)

This is a recursive definition, as an expression can be a

number, a number multiplied by another expression, or a

set of brackets containing another expression.

Testing and debugging declarative code may involve

reading the pattern or facts into an internal data structure,

and scanning for loops, multiple paths and combinations

that would lead to undefined outputs.

In some cases, a process could be used to expand a

pattern into a tree-like structure which may be easier to

interpret visually. In the case of recursive definitions that

could be infinite, a tree diagram could extend to several

levels to indicate the general pattern of expansion.

The pattern can also be used to generate random data that

has a matching pattern based on the definition.

281

This may highlight some of the cases that are included

within the pattern unintentionally, and patterns that were

intended to be included but are not being generated.

Debugging can also be performed by executing a process

that uses the pattern or lists of facts, and generating a

trace of the logic path that was used during processing.

This may include a list of the individual sub-patterns that

were matched at each stage, or the facts that were

checked and used to determine the result.

282

4.11.3. Summary of debugging approaches

Approach Description

Reading code Reading code and

following the execution

path that results in the

incorrect output.

Program traces Logging the value of data

variables, and details of

which sections of code

were executed and which

conditions were triggered,

to a data file as the

program runs.

Debuggers Using a debugger to halt

the program during

execution, view the value

of data variables, and step

through sections of code.

Viewing data structures Writing entire data

structures to a file and

viewing the contents of

the structure, to identify

obvious problems and to

re-calculate figures and

compare data with other

structures.

Cleaning code Minor re-writing of code

to add comments, correct

inconsistent variable

names and statements, and

clarify the logic flow

within the code.

283

Detecting errors

Reverse calculations Performing a calculation

in reverse and

recalculating the input

value from the generated

output, to check that the

input values match.

Alternative algorithms Using an alternative

algorithm to generate the

same output, and check

that the output data

matches.

Consistent output Checking output results

for consistency, such as

checking that output

weights sum to 1, that

sorted data is actually

sorted etc.

Data checking Checking data items at

various stages in a

process, including

scanning data structures,

to check for negative

items, zero values, empty

lists, weights that do not

sum to 1 etc.

Memory corruptions Using checksums and

magic numbers to detect

pointers to incorrect types

and memory structures

that have been overwritten

with other data.

Declarative code

284

Traces of logic flow Writing a trace of the logic

path used and the patterns

that were matched to a

file, so that problems with

the declarative structure

can be identified.

Scanning structures Scanning structures using

a test routine to detect

loops, multiple paths, and

combinations of input

conditions that would

result in an undefined

output.

285

4.12. Documentation

4.12.1. System Documentation

During the development of a system, several documents

may be produced. This typically includes a “Functional

Specification”, which defines in detail the functions and

calculations that the system should perform.

Other documents, such as design documents may also be

produced.

System documentation can be used during maintenance,

and also during enhancements to a system.

4.12.2. User Guide

User documentation may include a user guide. This

document is a guide to using the system. It may include a

description of the process and functions that the system

performs, as well as a reference guide to calculations and

conditions. In some user guides a set-by-step tutorial of

various functions is included.

4.12.3. Procedure Manual

A procedure manual is usually produced by the end users

of the system, rather than the developers of the system.

The procedure manual defines how a system is used in a

particular installation. This may include a description of

the sources of various data items that are maintained and

a list of the timing and order of regular processes.

286

5. Appendix A - Summary of operators

Brackets (a) Bracketed

Expression

a

Arithmetic a + b Addition a added to b
 a – b Subtraction b subtracted from a

 a * b Multiplication a multiplied by b

 a / b Division a divided by b
 a MOD b Modulus a – b * int(a / b)

 - a Unary Minus The negative of a

 a ^ b Exponentiation ab a raised to the power of b

String a & b Concatenation b appended to a

Relational a < b Less Than True if a is less than b,

otherwise false

 a <= b Less Than or Equal
To

True if a is less than or equal to
b, otherwise false

 a > b Greater Than True if a is greater than b,

otherwise false
 a >= b Greater Than or

Equal To

True if a is greater than or

equal to b, otherwise false

 a = b Equality True if a and b have the same
value, otherwise false

 a <> b Inequality True if a and b have different
values, otherwise false

Logical

Boolean

a OR b Logical Inclusive OR True if either a or b is true,

otherwise false

 a XOR b Logical Exclusive
OR

True if a is true and b is false,
or a is false and b is true,

otherwise false.

 a AND b Logical AND True if a and b are both true,
otherwise false

 NOT a Logical NOT True if a is false, false if a is

true

Bitwise

Boolean

a OR b Bitwise Inclusive OR 1 is either a or b is 1, otherwise

0

 a XOR b Bitwise Exclusive
OR

1 if a is 1 and b is 0, or a is 0
and b is 1, otherwise 0.

 a AND b Bitwise AND 1 if a is 1 and b is 1, otherwise

0
 NOT a Bitwise NOT 1 if a is 0, 0 if a is 1

Addresses ref a Reference The address of the variable a

 deref a Dereferece The data value referred to by

pointer a

Array

Reference

a[b] The element b within the array

a

Subroutine

Call

a(b) A call of subroutine a, passing

parameter b

Element

Reference

a.b Item b within structure a

Assignment a = b Assignment Set the value of variable a to
equal the value of expression b

