
Introduction to
Programming

using

Fortran 95/2003/2008

Ed Jorgensen

December, 2016
Version 3.0.29

Cover Diagram
The cover image is the plotted output from the chaos game program from chapter 11.
The image was plotted with GNUplot.

Copyright
Ed Jorgensen, 2013, 2014, 2015, 2016

You are free:
• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

Under the following conditions:
• Attribution. You must attribute the work to “Introduction to Programming using Fortran

95/2003/2008” (but not in any way that suggests that the author endorses you or your
use of the work).

• Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to

• http://creativecommons.org/licenses/by-sa/3.0/
Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

ii

Table of Contents

 1 Introduction... 1
 1.1 Why Learn Programming.. 1
 1.2 Fortran... 1
 1.3 Complete Fortran 95/2003/2008 Documentation.. 1
 1.4 What Is A Program.. 2
 1.5 Operating System.. 2

 2 Computer Organization.. 3
 2.1 Architecture Overview.. 3
 2.2 Compiler.. 4
 2.3 Information Representation... 4

 2.3.1 Decimal Numbers.. 4
 2.3.2 Binary Numbers... 5
 2.3.3 Character Representation... 5

 2.4 Exercises.. 5
 2.4.1 Quiz Questions... 5

 3 Getting Started.. 7
 3.1 Required Skills.. 7
 3.2 Program Formats... 7

 3.2.1 Program Statement... 7
 3.2.2 Comments.. 8
 3.2.3 Simple Output.. 8
 3.2.4 Example – First Program... 8

 3.3 Text Editor... 8
 3.4 Compiling.. 9

 3.4.1 Advanced Compiler Options.. 9
 3.5 Executing... 9
 3.6 Exercises.. 10

 3.6.1 Quiz Questions... 10
 3.6.2 Suggested Projects... 11

 4 Fortran 95/2003/2008 – Basic Elements.. 13
 4.1 Variables.. 13

 4.1.1 Variable Names.. 13
 4.1.2 Keywords... 14

 4.2 Data Types... 14
 4.2.1 Integer.. 14
 4.2.2 Real.. 15
 4.2.3 Complex... 15
 4.2.4 Character.. 15
 4.2.5 Logical... 15
 4.2.6 Historical Data Typing... 15

 4.3 Declarations... 16

iii

 4.3.1 Declaring Variables.. 16
 4.3.2 Variable Ranges... 16
 4.3.3 Type Checking... 16
 4.3.4 Initialization... 17
 4.3.5 Constants... 17

 4.4 Comments.. 17
 4.5 Continuation Lines.. 18

 4.5.1 Example... 18
 4.6 Declarations, Extended Size Variables.. 18

 4.6.1 Integers.. 19
 4.6.2 Real.. 19

 4.7 Exercises.. 19
 4.7.1 Quiz Questions... 19
 4.7.2 Suggested Projects... 20

 5 Expressions.. 21
 5.1 Literals... 21

 5.1.1 Integer Literals... 21
 5.1.2 Real Literals... 21

 5.1.2.1 E-Notation.. 21
 5.1.3 Complex Literals... 22
 5.1.4 Character Literals... 22
 5.1.5 Logical Constants.. 23

 5.2 Arithmetic Operations... 23
 5.2.1 Assignment.. 23
 5.2.2 Addition... 23
 5.2.3 Subtraction... 24
 5.2.4 Multiplication.. 24
 5.2.5 Division... 24
 5.2.6 Exponentiation... 25

 5.3 Order of Operations... 25
 5.4 Intrinsic Functions... 26

 5.4.1 Mathematical Intrinsic Functions.. 26
 5.4.2 Conversion Functions.. 26
 5.4.3 Summary.. 27

 5.5 Mixed Mode.. 27
 5.6 Examples... 28
 5.7 Exercises.. 28

 5.7.1 Quiz Questions... 28
 5.7.2 Suggested Projects... 29

 6 Simple Input and Output... 31
 6.1 Output – Write... 31

 6.1.1 Output – Print.. 32
 6.2 Input – Read.. 32
 6.3 Example... 33
 6.4 Exercises.. 34

iv

 6.4.1 Quiz Questions... 34
 6.4.2 Suggested Projects... 34

 7 Program Development.. 37
 7.1 Understand the Problem.. 37
 7.2 Create the Algorithm... 38
 7.3 Implement the Program... 38
 7.4 Test/Debug the Program.. 39

 7.4.1 Error Terminology... 40
 7.4.1.1 Compiler Error... 40
 7.4.1.2 Run-time Error... 40
 7.4.1.3 Logic Error... 41

 7.5 Exercises.. 42
 7.5.1 Quiz Questions... 42
 7.5.2 Suggested Projects... 42

 8 Selection Statements... 43
 8.1 Conditional Expressions.. 43
 8.2 Logical Operators.. 44
 8.3 IF Statements... 44

 8.3.1 IF THEN Statement... 45
 8.3.1.1 IF THEN Statement, Simple Form.. 45

 8.3.2 IF THEN ELSE Statement... 45
 8.3.3 IF THEN ELSE IF Statement.. 46

 8.4 Example One... 47
 8.4.1 Understand the Problem.. 47
 8.4.2 Create the Algorithm.. 48
 8.4.3 Implement the Program... 49
 8.4.4 Test/Debug the Program.. 50

 8.5 SELECT CASE Statement.. 51
 8.6 Example Two... 53

 8.6.1 Understand the Problem.. 53
 8.6.2 Create the Algorithm.. 53
 8.6.3 Implement the Program... 54
 8.6.4 Test/Debug the Program.. 54

 8.7 Exercises.. 55
 8.7.1 Quiz Questions... 55
 8.7.2 Suggested Projects... 56

 9 Looping.. 59
 9.1 Counter Controlled Looping... 59
 9.2 EXIT and CYCLE Statements... 61
 9.3 Counter Controlled Example... 61

 9.3.1 Understand the Problem.. 62
 9.3.2 Create the Algorithm.. 62
 9.3.3 Implement the Program... 62
 9.3.4 Test/Debug the Program.. 63

v

 9.4 Conditional Controlled Looping... 63
 9.5 Conditionally Controlled Loop Example.. 65

 9.5.1 Understand the Problem.. 65
 9.5.2 Create the Algorithm.. 65
 9.5.3 Implement the Program... 66
 9.5.4 Test/Debug the Program.. 67

 9.6 Exercises.. 67
 9.6.1 Quiz Questions... 67
 9.6.2 Suggested Projects... 69

 10 Formatted Input/Output.. 71
 10.1 Format... 71
 10.2 Format Specifiers.. 71
 10.3 Integer Format Specifier.. 72
 10.4 Real Format Specifier.. 73
 10.5 Logical Format Specifier... 73
 10.6 Character Format Specifier... 74
 10.7 Advance Clause... 75
 10.8 Example... 75

 10.8.1 Understand the Problem.. 76
 10.8.2 Create the Algorithm.. 76
 10.8.3 Implement the Program... 76
 10.8.4 Test/Debug the Program.. 78

 10.9 Exercises.. 79
 10.9.1 Quiz Questions... 79
 10.9.2 Suggested Projects... 79

 11 Characters and Strings... 81
 11.1 Character and String Constants... 81
 11.2 Character Variable Declaration.. 82
 11.3 Character Variable Initialization.. 82
 11.4 Character Constants... 82
 11.5 Character Assignment.. 83
 11.6 Character Operators... 83
 11.7 Character Substrings.. 83
 11.8 Character Comparisons... 84
 11.9 Intrinsic Character Operations... 84
 11.10 Example... 85

 11.10.1 Understand the Problem... 85
 11.10.2 Create the Algorithm.. 85
 11.10.3 Implement the Program... 86
 11.10.4 Test/Debug the Program.. 87

 11.11 Exercises.. 87
 11.11.1 Quiz Questions... 87
 11.11.2 Suggested Projects... 88

 12 File Operations.. 89

vi

 12.1 File Open... 89
 12.2 File Write... 90
 12.3 Stop Statement... 90
 12.4 File Read.. 91
 12.5 Rewind... 91
 12.6 Backspace.. 91
 12.7 Close File... 92
 12.8 Example... 92

 12.8.1 Understand the Problem.. 92
 12.8.2 Create the Algorithm.. 92
 12.8.3 Implement the Program... 93
 12.8.4 Test/Debug the Program.. 94

 12.9 Exercises.. 94
 12.9.1 Quiz Questions... 95
 12.9.2 Suggested Projects... 95

 13 Single Dimension Arrays.. 97
 13.1 Array Declaration.. 98

 13.1.1 Static Declaration... 98
 13.1.2 Static Array Declaration.. 98
 13.1.3 Dynamic Array Declaration... 99

 13.1.3.1 Dynamic Array Allocation... 99
 13.2 Accessing Array Elements... 100

 13.2.1 Array Bounds... 100
 13.3 Implied Do-Loop... 101
 13.4 Initializing Arrays.. 101
 13.5 Example... 102

 13.5.1 Understand the Problem.. 102
 13.5.2 Create the Algorithm.. 102
 13.5.3 Implement the Program... 104
 13.5.4 Test/Debug the Program.. 106

 13.6 Arrays of Strings.. 106
 13.7 Exercises.. 107

 13.7.1 Quiz Questions... 107
 13.7.2 Suggested Projects... 108

 14 Multidimensional Arrays.. 111
 14.1 Array Declaration... 111

 14.1.1 Static Declaration... 112
 14.1.2 Dynamic Declaration... 112
 14.1.3 Dynamic Array Allocation... 112

 14.2 Accessing Array Elements... 113
 14.3 Example... 114

 14.3.1 Understand the Problem... 114
 14.3.2 Create the Algorithm.. 115
 14.3.3 Implement the Program... 116
 14.3.4 Test/Debug the Program.. 117

vii

 14.4 Exercises.. 118
 14.4.1 Quiz Questions... 118
 14.4.2 Suggested Projects... 118

 15 Subprograms... 121
 15.1 Subprogram Types... 121
 15.2 Program Layout... 121

 15.2.1 Internal Routines.. 122
 15.2.2 External Routines... 122

 15.3 Arguments.. 122
 15.3.1 Argument Intent... 122

 15.4 Variable Scope... 122
 15.5 Using Functions and Subroutines.. 122

 15.5.1 Argument Passing.. 123
 15.6 Functions... 123

 15.6.1 Intrinsic Functions... 124
 15.6.2 User-Defined Functions... 124

 15.6.2.1 Side Effects.. 124
 15.7 Subroutines.. 125
 15.8 Example... 126

 15.8.1 Understand the Problem.. 127
 15.8.2 Create the Algorithm.. 128
 15.8.3 Implement the Program... 129
 15.8.4 Test/Debug the Program.. 130

 15.9 Exercises.. 130
 15.9.1 Quiz Questions... 130
 15.9.2 Suggested Projects... 132

 16 Derived Data Types... 135
 16.1 Definition... 135
 16.2 Declaration.. 136
 16.3 Accessing Components.. 136
 16.4 Example One... 137

 16.4.1 Understand the Problem.. 137
 16.4.2 Create the Algorithm.. 138
 16.4.3 Implement the Program... 138
 16.4.4 Test/Debug the Program.. 141

 16.5 Arrays of Derived Data.. 141
 16.6 Example Two... 142

 16.6.1 Understand the Problem.. 142
 16.6.2 Create the Algorithm.. 143
 16.6.3 Implement the Program... 144
 16.6.4 Test/Debug the Program.. 146

 16.7 Exercises.. 147
 16.7.1 Quiz Questions... 147
 16.7.2 Suggested Projects... 147

viii

 17 Modules.. 149
 17.1 Module Declaration... 149
 17.2 Use Statement.. 150
 17.3 Updated Compilation Commands... 150
 17.4 Module Example Program... 151

 17.4.1 Understand the Problem.. 151
 17.4.2 Create the Algorithm.. 152
 17.4.3 Implement the Program... 152

 17.4.3.1 Main Program.. 152
 17.4.3.2 Module Routines.. 153

 17.4.4 Compile the Program... 154
 17.4.5 Test/Debug the Program.. 154

 17.5 Exercises.. 155
 17.5.1 Quiz Questions... 155
 17.5.2 Suggested Projects... 155

 18 Recursion... 157
 18.1 Recursive Subroutines... 157
 18.2 Recursive Print Binary Example... 158

 18.2.1 Understand the Problem.. 158
 18.2.2 Create the Algorithm.. 158
 18.2.3 Implement the Program... 159
 18.2.4 Test/Debug the Program.. 160

 18.3 Recursive Functions.. 160
 18.4 Recursive Factorial Example... 160

 18.4.1 Understand the Problem.. 161
 18.4.2 Create the Algorithm.. 161
 18.4.3 Implement the Program... 161
 18.4.4 Test/Debug the Program.. 162

 18.5 Recursive Factorial Function Call Tree... 163
 18.6 Exercises.. 164

 18.6.1 Quiz Questions... 164
 18.6.2 Suggested Projects... 164

 19 Character String / Numeric Conversions... 167
 19.1 Character String to Numeric Conversion.. 167
 19.2 Numeric to Character String Conversion.. 169
 19.3 Exercises.. 170

 19.3.1 Quiz Questions... 170
 19.3.2 Suggested Projects... 171

 20 System Services... 173
 20.1 Date and Time... 173

 20.1.1 Date and Time Options.. 173
 20.1.2 Date and Time Example Program.. 174

 20.2 Command Line Arguments.. 176
 20.2.1 Argument Count... 177

ix

 20.2.2 Get Arguments... 177
 20.2.3 Command Line Arguments, Example Program... 178

 20.3 Exercises.. 181
 20.3.1 Quiz Questions... 181
 20.3.2 Suggested Projects... 181

 21 Appendix A – ASCII Table.. 183

 22 Appendix B – Windows Start-Up Instructions... 185
 22.1 Working Files.. 185
 22.2 Obtaining The Compiler.. 185
 22.3 Command Prompt.. 186

 22.3.1 Windows XP/Vista/7.. 186
 22.3.2 Windows 8/10.. 186
 22.3.3 Command Prompt Window... 186
 22.3.4 Device and Directory... 186

 22.4 Compiler Installation Verification... 187
 22.5 Compilation... 187
 22.6 Executing... 188
 22.7 Example... 188

 23 Appendix C – Random Number Generation.. 189
 23.1 Initialization... 189
 23.2 Generating Random Number... 189
 23.3 Example... 190
 23.4 Example... 191

 24 Appendix D – Intrinsic Functions.. 193
 24.1 Conversion Functions.. 193
 24.2 Integer Functions... 193
 24.3 Real Functions... 194
 24.4 Character Functions... 194
 24.5 Complex Functions.. 195
 24.6 Array Functions... 195
 24.7 System Information Functions.. 196

 25 Appendix E – Visualization with GNUplot... 197
 25.1 Obtaining GNUplot... 197
 25.2 Formatting Plot Files... 197

 25.2.1 Header.. 198
 25.2.2 Footer... 198

 25.3 Plotting Files.. 198
 25.4 Example... 198

 25.4.1 Plot Program.. 199
 25.4.2 Plot File.. 200
 25.4.3 Plot Output... 200

 26 Appendix F – Quiz Question Answers... 201

x

 26.1 Quiz Question Answers, Chapter 1... 201
 26.2 Quiz Question Answers, Chapter 2... 201
 26.3 Quiz Question Answers, Chapter 3... 201
 26.4 Quiz Question Answers, Chapter 4... 202
 26.5 Quiz Question Answers, Chapter 5... 202
 26.6 Quiz Question Answers, Chapter 6... 203
 26.7 Quiz Question Answers, Chapter 7... 203
 26.8 Quiz Question Answers, Chapter 8... 203
 26.9 Quiz Question Answers, Chapter 9... 204
 26.10 Quiz Question Answers, Chapter 10... 205
 26.11 Quiz Question Answers, Chapter 11.. 206
 26.12 Quiz Question Answers, Chapter 12... 206
 26.13 Quiz Question Answers, Chapter 13... 206
 26.14 Quiz Question Answers, Chapter 14... 207
 26.15 Quiz Question Answers, Chapter 15... 208
 26.16 Quiz Question Answers, Chapter 16... 209
 26.17 Quiz Question Answers, Chapter 17... 210
 26.18 Quiz Question Answers, Chapter 18... 210
 26.19 Quiz Question Answers, Chapter 19... 211
 26.20 Quiz Question Answers, Chapter 20... 212

 27 Appendix G – Fortran 95/2003/2008 Keywords... 213

 Index... 217

Illustration Index
Illustration 1: Computer Architecture..3
Illustration 2: Fortran 95/2003/2008 Compile Process..4
Illustration 3: Factorial Recursion Tree...163

xi

xii

 1 Introduction
Computers are everywhere in our daily lives. Between the desktop, laptop, phone, bank, and vehicle, it
is difficult to completely get away from computers. It only makes sense to learn a little about how a
computer really works.

This text provides an introduction to programming and problem solving using the Fortran
95/2003/2008 programming language. This introduction is geared for non-computer science majors.
The primary focus is on an introduction to problem solving and algorithm development. As such,
many details of the Fortran 95/2003/2008 language are omitted.

 1.1 Why Learn Programming

For science and technical majors, computers are used extensively in all aspects of every discipline.
Learning the basics of how computers work and how programs are created is useful and directly
applicable.

Programming a computer is basically applied problem solving. You are given a problem, the problem
is analyzed, a solution is developed, and then that solution is implemented and tested. Enhanced
problem solving skills can be applied to any endeavor. These basic skills, once developed, can be
applied to other programming languages, MATLAB, or even spreadsheet macros.

Unfortunately, learning programing and how a computer really works may ruin some B movies.

 1.2 Fortran

Fortran is a programming language often used by the scientific community. Its name is a contraction of
FORmula TRANslation. FORTRAN is one of the earliest programming languages and was designed
specifically for solving scientific and engineering computational problems.

This text utilizes the Fortran 95/2003/2008 standard. Older versions of Fortran, like Fortran 77, are not
referenced. The older Fortran versions have less features and require additional, often burdensome,
formatting requirements.

 1.3 Complete Fortran 95/2003/2008 Documentation

This text it is not a comprehensive or complete reference to the Fortran 95/2003/2008 language. The
entire GNU Fortran compiler documentation is available on-line at the following location:

http://gcc.gnu.org/onlinedocs/gcc5.3.0/gfortran/

If this location changes, a web search will be able to find the new location.

1

Chapter 1 ► Introduction

 1.4 What Is A Program

A computer program is a series of instructions which enables the computer to perform a designated
task. As this text will demonstrate, a computer must be told what to do in precise, step-by-step detail.
These steps might include obtaining data, arithmetic operations (addition, subtraction, multiplication,
division, etc.), data storage, and information output. The computer will perform these tasks as
instructed, even if they don't always make sense. Consequently, it is the programmer who must
develop a solution to the problem.

 1.5 Operating System

The Operating System, or OS, is an interface between the user and the hardware (CPU, memory,
screen, disk drive, etc.). The OS is responsible for the management of the hardware, coordination of
activities, and the sharing of the resources of the computer that acts as a host for computing
applications run on the machine. The common operating systems include various versions of
Windows. MAC OS X, and UNIX/Linux. Programs written in Fortran will work on these operating
systems.

2

 2 Computer Organization
Before writing programs, it is useful to understand some basics about how a computer is organized.
This section provides a brief, high-level overview of the basic components of a computer and how they
interact.

 2.1 Architecture Overview

The basic components of a computer include a Central Processing Unit (CPU), Primary Storage or
Random Access Memory (RAM), Secondary Storage, and Input/Output devices (i.e., screen, keyboard,
and mouse), and an interconnection referred to as BUS. The secondary storage may be a Solid State
Drive (SSD), disk drive, or other type of secondary storage media.

A very basic diagram of a computer architecture is as follows:

Programs and data are typically stored on the disk drive. When a program is executed, it must be
copied from the disk drive into the RAM memory. The CPU executes the program from RAM. This is
similar to storing a term paper on the disk drive, and when writing/editing the term paper, it is copied
from the disk drive into memory. When done, the updated version is stored back to the disk drive.

3

Illustration 1: Computer Architecture

Screen / Keyboard /
Mouse

Secondary Storage
(i.e., SSD / Disk Drive /
Other Storage Media)

Primary Storage
Random Access
Memory (RAM)

CPU

BUS

(Interconnection)

Chapter 2 ► Computer Organization

 2.2 Compiler

Programs can be written in the Fortran programming language. However, the CPU does not read
Fortran directly. Instead, the Fortran program that we create will be converted into binary (1's and 0's)
by the compiler. These 1's and 0's are typically referred to as machine language. The CPU will read
the instructions and information, represented in binary as machine language, and perform the
commands from the program.

The compiler is a program itself and is required in order to create the files needed to execute programs
written in Fortran 95/2003/2008.

 2.3 Information Representation

All information, including numbers, characters, and instructions are represented in the computer in
binary (1's and 0's). The information, numbers in this example, is converted into binary representation
(1's and 0's) for storage in the computer. Fortunately, this is generally done transparently.

 2.3.1 Decimal Numbers

Before discussing binary numbers, a brief review of the decimal system is presented. The number
"1234" as,

Thousands Hundreds Tens Ones

103 102 101 100

1000 100 10 1

1 2 3 4

Which means,
1234 = 1×1000 2×100 3×10 4×1
1234 = 1×103

 2×102
 3×101

 4×100

The decimal system is base 10 using the digits 0 through 9.

4

Illustration 2: Fortran 95/2003/2008 Compile Process

Fortran Compiler Executable
95/2003/2008 File
Program

Chapter 2 ◄ Computer Organization

 2.3.2 Binary Numbers

A bit is the basic unit of information in computing and digital communications. A bit can have only
one of two values, 0 or 1. The term bit is a contraction of binary digit.

The binary system, as well as its math, operates in base 2, using two symbols, 0 and 1.

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 0 0 0 1 1 0 1

In base 2, we put the digits 0 or 1 in columns 20, 21, 23, and so on. For example,

11012 = 1×23
 1×22

 0×21
 1×20

= 841

Which in decimal is 1310.

A set of 8 bits is a referred to as a byte. Computer data is typically allocated in bytes or sets of bytes.

 2.3.3 Character Representation

Characters are represented using the American Standard Code for Information Interchange (ASCII).
Refer to Appendix A.

 2.4 Exercises

Below are some quiz questions based on this chapter.

 2.4.1 Quiz Questions

Below are some quiz questions.

1) How is information represented in the computer?

2) What does the Fortran compiler do?

3) What architecture component connects the memory to the CPU?

4) What are the following binary values in decimal?

a) 00001012

b) 00010012

c) 00011012

d) 00101012

5) How are characters represented in the computer?

5

Chapter 2 ► Computer Organization

6) Where are programs stored when the computer is turned off?

7) Where must programs be located when they are executing?

6

 3 Getting Started
This section provides a brief overview of how to get started. This includes the general process for
creating a very simple program, compiling, and executing the program. Some detailed steps regarding
working with files, obtaining the compiler, and compiling a program are included in Appendix B,
Windows Start-up Instructions.

 3.1 Required Skills

Before starting, you should have some basic computer skills, including the following:

● Ability to use a web browser
● Basic understanding of hierarchical computer directory structure
● File manipulation (create, delete, rename, move, etc.)
● Usage of the command prompt (Windows) or terminal interface (Unix, MAC)
● Ability to edit a text file

○ Includes selecting and learning a text editor (i.e., Notepad, Notepad++, emacs, etc.)

If you are unsure about any of these requirements you will need to learn them before continuing.
Fortunately, they are not difficult. Additionally, there are numerous tutorials available on the Web.

The following sections assume that the Fortran 95/2003/2008 compiler is installed and available. For
additional information regarding obtaining and installing the compiler, refer to Appendix B. The
Fortran 95/2003/2008 compiler is available for download at no cost.

 3.2 Program Formats

Fortran 95/2003/2008 programs must be written and formatted in a specific manner. The following
sections summarize the basic program elements followed by a simple example.

 3.2.1 Program Statement

A Fortran 95/2003/2008 program is started with a program statement, 'program <name>', and ended
with an end program statement, 'end program <name>'. Refer to the example first program to see
an example of these statements. The program name for <name> is chosen by the program author and
would typically reflect something related to what the program does.

The name used may not be used again for other program elements (such as variables described in the
next chapter). The program name must start with a letter, followed by letters, numbers, or an
underscore (“_”) and may not be longer than 32 characters. Capital letters are treated the same way as
lower-case letters. Refer to the sample program in the following sections for an example.

7

Chapter 3 ► Getting Started

 3.2.2 Comments

Comments are information for the programmer and are not read by the computer. For example,
comments typically include information about the program. For programming assignments, the
comments should include the programmer name, assignment number, and a brief description of the
program. In Fortran, the exclamation mark (!) denotes a comment. Any characters after the
exclamation mark (!) are ignored by the compiler and thus are comments as shown in following
example.

 3.2.3 Simple Output

A program can display a simple message to the screen by using the write statement. For example:

write (*,*) "Hello World"

Will display the message Hello World to the screen. Additional information regarding the write
statement and outputting information is provided in later chapters.

 3.2.4 Example – First Program

The following trivial program illustrates the initial formatting requirements.

! Simple Example Program
program first

write (*,*) "Hello World."

end program first

In this example, the program is named 'first'. This file, provided as input to the compiler, is typically
referred to as the source file.

 3.3 Text Editor

The first step is to create a text file named hw.f95 using a text editor. It is useful to place programs
and various files into a working directory. This way the files can be easily found and not confused with
other, unrelated files and data. The hw.f95 file should be created and placed in a user created
working directory. For this example, a working directory named 'fortran' was created and the file is
then created and edited in that location.

A file name is typically comprised of two parts; a name and an extension. In this example, the file
name is hw and the extension is .f95. The usual extension for this and future programs will be
.f95 which indicates that the file is a Fortran 95/2003/2008 source file.

The following examples will use the hw.f95 file name. If desired, a different file name may be
used. However, the name will need to be adjusted for the compiler and execute steps in the following
sections.

8

Chapter 3 ◄ Getting Started

 3.4 Compiling

Once the program is typed into a file, the file must be compiled. Compiling will convert the human
readable Fortran program, or source file, into a computer readable version (in binary).

In order to compile, the command prompt (Windows) or terminal interface (Unix, MAC) is required.
This interface will allow commands to be typed directly into the computer (instead of using a mouse).
Once started, it is typically necessary to change directories (from the default location) to the location of
where the hw.f95 source file was located (from the previous steps). Changing directories is
typically done with a cd <directoryName> command. For example, cd fortran (which is the
name of the directory used in this example). The prompt typically changes to include the current
directory location.

In the example below, the commands typed by the user are displayed in bold. The regular (non-bolded)
text refers to prompts or other information displayed by the computer (which need not be typed).

To compile the example program, the following command would be entered:

C:\fortran> gfortran o hw hw.f95

This command will tell the 'gfortran' compiler to read the file hw.f95 and, if there are no errors,
create an output file referred to as an executable file. On Windows based machines the executable file
is named hw.exe. And on Unix or Mac based machines, the executable is named hw (no extension).
If there is an error, the compiler will generate an error message, sometimes cryptic, and provide a line
number. Such errors are usually the result of mistyping one of the instructions. Any errors must be
resolved before continuing.

 3.4.1 Advanced Compiler Options

In addition, to the basic compilation sometimes additional instructions, or options, may be required.
For example, when using arrays (chapter 9), an option for bounds checking is typically desired.

For example, to compile with bounds checking, the following command might be entered:

C:\fortran> gfortran fcheck=bounds o hw hw.f95

This command will tell the 'gfortran' compiler to include bounds checking. More information
regarding arrays and bounds checking is addressed in chapters 13 and 14.

 3.5 Executing

To execute or run a program on a Windows based machine, type the name of the executable file. For
example, to execute or run the hw.exe program:

C:\fortran> hw
 Hello World.
C:\fortran>

Which will execute the example program and display the “Hello World.” message to the screen.

9

Chapter 3 ► Getting Started

A more complete example is as follows:

It is not necessary to type the extension (i.e., “.exe”) portion of the file name. It should be noted that
the space prior to the “H” is not produced by the program, but is how the system displays output.

To execute or run a program on a Unix or MAC based machine, type “./” and the name of the
executable file. For example, to execute or run the hw program:

c:\fortran> ./hw
 Hello World.
c:\fortran>

The output ('Hello World.' as displayed on the screen) will be the same for Windows, Unix, or MAC
based machines.

 3.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 3.6.1 Quiz Questions

Below are some quiz questions.

1) What is the typical name of the input file for the compiler?

2) What is the typical name of the output file from the compiler?

3) Fortran program must start with and end with what statement?

4) How are Fortran comments marked?

10

Chapter 3 ◄ Getting Started

5) What is the typical Fortran 95/2003/2008 source file extension?

6) What is the typical Fortran 95/2003/2008 compiler output file, or executable file, extension
(after the program is compiled)?

 3.6.2 Suggested Projects

Below are some suggested projects.

1) Create a working directory for the storage of program files (on the computer being used).

2) Obtain and install the GNU Fortran 95/2003/2008 compiler on a suitable computer. Refer to
Appendix B as needed.

3) Type in the hello world program, compile, and execute the program.

4) Update the example program to display your name in addition to the Hello World message.

11

Chapter 3 ► Getting Started

12

 4 Fortran 95/2003/2008 – Basic Elements
Before beginning to writing programs, it is necessary to know some of the basic elements of the
Fortran language. This section describes some of the basic elements of Fortran. Additional
information will be added in later sections.

 4.1 Variables

The basic concept in a program is the concept of a variable. Variables in a program are like variables in
an algebraic expression. They are used to hold values and then write mathematical expressions using
them. Fortran allows us to have variables of different types.

A variable can hold one value at a time. If another value is placed in the variable, the previous value is
over-written and lost.

Variable Name → 42

Variables must be declared at the start of the program before they are used.

 4.1.1 Variable Names

Each variable must be named. The variable name is how variables, which are memory locations, are
referred to by the program. A variable name must start with a letter, followed by letters, numbers, or an
underscore (“_”) and may not be longer than 32 characters. Capital letters are treated the same way as
lower-case letters, (i.e., “AAA” is the same variable as “aaa”).

For example, some valid variable names are as follows:

x
today
next_month
summation10

Some invalid examples include:

1today
this_is_a_variable_name_with_way_way_to_many_characters_in_it
next@month
next month
today!

Note that the space (between next and month) or the special character, @, is not allowed. Additionally,
each variable must have a type associated as explained in the following sections.

13

Chapter 4 ► Fortran 95/2003/2008 – Basic Elements

 4.1.2 Keywords

In programming, a keyword is a word or identifier that has a special meaning in a programming
language. For example, in the “hello world” Fortran program from the previous chapter, the word
program has a special meaning in that it is used to note the start or beginning of a program.
Additionally, the word write has a special meaning to note an output action (e.g., writing some
information to an output device, like the screen).

Such keywords are reserved in that they cannot be used for anything else such as variable names. That
is, a variable name of program or write is not allowed.

As additional Fortran 95/2003/2008 statements and language constructs are explained, more keywords
will be identified. In general, words used for Fortran language statements, attributes, and constructs
will likely be keywords. A complete list of keywords or reserved words is located in Appendix F.

 4.2 Data Types

Fortran, like many other high level programming languages, supports several different data types to
make data manipulation easier. The most frequently used data types are integer and floating point.
Other data types are complex numbers, characters and logical data.

In a Fortran statement, data can appear either as a literal (e.g., an actual value such as 3.14159, 16,
-5.4e-4) or as a variable name which identifies a location in memory to store the data.

The five basic Fortran 95/2003/2008 data types are as follows:

Type Description

integer Variable that is an integer or whole number (not a
fraction) that can be positive, negative, or zero.

real Variable that can be set to a real number.

complex Variable that can be set to a complex number.

character Variable that is a character or sequence of
characters.

logical Variable that can only be set to .true. or .false.

It is also possible to have derived types and pointers. Both of these can be useful for more advanced
programs and are described in later chapters.

 4.2.1 Integer

An integer1 is a whole number (not a fraction) that can be positive, negative, or zero. Examples include
the numbers 10, 0, -25, and 5,148. Integers are the numbers people are most familiar with, and they
serve a crucial role in mathematics and computers. All integers are whole numbers, so operations like
one divided by two (1/2) is 0 since the result must be a whole number. For integer division, no
rounding will occur as the fractional part is truncated.

1 For more information regarding integers, refer to: http://en.wikipedia.org/wiki/Integer

14

Chapter 4 ◄ Fortran 95/2003/2008 – Basic Elements

 4.2.2 Real

A real number2 includes the fractional part, even if the fractional part is 0. Real numbers, also referred
to as floating point numbers, include both rational numbers and irrational numbers. Examples of
irrational numbers or numbers with repeating decimals include π, 2 and e. Additional examples
include 1.5, 5.0, and 3.14159. Fortran 95/2003/2008 will accept 5. as 5.0. All examples in this text
will include the “.0” to ensure clarity.

 4.2.3 Complex

A complex number3, in mathematics, is a number comprising a real number and an imaginary number. It
can be written in the form of a + bi, where a and b are real numbers, and the i is the standard imaginary
unit with the property that i2 = −1.0. The complex numbers contain the ordinary real numbers, but
extend them by adding in extra numbers like an extra dimension. This data type is not used
extensively, but can be useful when needed.

 4.2.4 Character

A character4 is a symbol like a letter, numerical digit, or punctuation. A string5 is a sequence or set of
characters. Characters and strings are typically enclosed in quotes. For example, the upper case letter
“Z” is a character and “Hello World” is a string. The characters are represented in a standardized
format referred to as ASCII.

 4.2.5 Logical

A logical6 is only allowed to have two values, true or false. A logical can also be referred to as a
boolean. In Fortran, the true and false values are formally expressed as .true. or .false. which are also
called logical constants. The leading and trailing . (period) are required for the true and false constants.

 4.2.6 Historical Data Typing

Unless a variable was explicitly typed, older versions of Fortran implicitly assumed a type for a
variable depending on the first letter of its name. Thus, if not explicitly declared, a variable whose
name started with one of the letters I through N was assumed to be an integer; otherwise it was
assumed to be real. To allow older code to run, Fortran 95/2003/2008 permits implicit typing.
However, this is poor practice, can be confusing, and often leads to errors. So, we will include the
IMPLICIT NONE statement at the start of all programs. This turns off implicit typing and the compiler
will identify and flag any variable not defined. This will help make some errors, such as mis-spelling a
variable name, significantly easier to locate.

2 For more information regarding real numbers, refer to: http://en.wikipedia.org/wiki/Real_numbers
3 For more information regarding complex numbers, refer to: http://en.wikipedia.org/wiki/Complex_number
4 For more information regarding characters, refer to: http://en.wikipedia.org/wiki/Character_(computing)
5 For more information regarding strings, refer to: http://en.wikipedia.org/wiki/String_(computer_science)
6 For more information regarding logicals, refer to: http://en.wikipedia.org/wiki/Boolean_data_type

15

Chapter 4 ► Fortran 95/2003/2008 – Basic Elements

 4.3 Declarations

Fortran variables must be declared before executable statements. This section provides an introduction
to how variables are declared.

 4.3.1 Declaring Variables

Declaring variables formally defines the data type of each variable and sets aside a memory location.
This is performed by a type declaration statement in the form of:

<type> :: <list of variable names>

The type must be one of the predefined data types (integer, real, complex, character, logical). Outlined
in the previous section. Declarations are placed in the beginning of the program (after the program
statement).

For example, to define an integer variable today,

integer :: today

Additional examples include:

integer :: today, tomorrow, yesterday
real :: ans2
complex :: z
logical :: answer
character :: myletter

The declarations can be entered in any order.

Additional information regarding character variables is provided in chapter 11.

 4.3.2 Variable Ranges

The computer has a predefined amount of space that can be used for each variable. This directly
impacts the size, or range, of the number that can be represented.

For example, an integer value can range between −2,147,483,648 and +2,147,483,647. Fortunately, this is
large enough for most purposes.

The range for real values is more complex. The range is approximately ±1.7×10±38 which supports about 7
digits of precision.

 4.3.3 Type Checking

The variable type declaration is enforced by the compiler. For example, if a variable is declared as an
integer, only an integer value (a whole number) is allowed to be assigned to that variable. Attempting
to assign a value of 1.75 to an integer variable could cause problems related to loss of precision. This
restriction is related to the fact that the internal representations for various types are very different and
not directly compatible. The compiler can sometimes recognize a type mismatch and implicitly
(automatically) perform a conversion. If this is done automatically, it is not always clear and could
lead to errors. As such, it is generally considered poor programming practice.

16

Chapter 4 ◄ Fortran 95/2003/2008 – Basic Elements

Conversions between types should be performed explicitly. Later chapters provide specific examples
of how this can be accomplished.

When initially learning to program, this may seem quite annoying. However, this type mismatch can
cause subtle and difficult to find errors.

 4.3.4 Initialization

It is possible to declare a variable and set its initial value at the same time. This initialization is not
required, but can sometime be convenient.

For example, to define an integer variable todaysdate and set it to the 15th of the month:

integer :: todaysdate=15

Additional examples include:

integer :: todaysday=15, tomorrow=16, yesterday=14
real :: ave = 5.5

Spaces or no spaces are allowed between the variable name. The variable declaration may or may not
include an equal signs (for initialization). Commas are used to separate multiple variable declarations
on the same line. Variables initialized at declaration can be changed later in the program as needed.

 4.3.5 Constants

A constant is a variable that cannot be changed during program execution. For example, a program
might declare a variable for π and set it to 3.14159. It is unlikely that a program would need to change
the value for π. The parameter qualifier will declare the variable as a constant, set the initial value, and
not allow that initial value to be altered during the program execution.

For example, the declarations:

real, parameter :: pi = 3.14159
integer, parameter :: width = 1280

will set the variable pi to 3.14159 and width to 1280 and ensure that they cannot be changed while the
program is executing.

 4.4 Comments

As previously noted, comments are information for the programmer and ignored by the compiler. The
exclamation mark (!) denotes a comment. Any information after the exclamation mark (!) is ignored by
the compiler. In general, comments typically include information about the program. For example, a
comment might include the last modification date, programmer name, and details about the update. For
programming assignments, the comments might include the programmer name, assignment number,
and a description of the program. The comments might include information about the approach being
used, source of formulas (if applicable), or maybe data requirements such as using positive values for
some geometric formulas. Commenting such reference information is strongly encouraged and will be
addressed in future sections.

17

Chapter 4 ► Fortran 95/2003/2008 – Basic Elements

 4.5 Continuation Lines

A statement must start on a new line. If a statement is too long to fit on a line, it can be continued on
the next line with an ampersand ('&'). Even shorter lines can be split and continued on multiple lines
for more readable formatting.

For example,

A = 174.5 * year &
 + count / 100.0

Is equivalent to the following

A = 174.5 * year + count / 100.0

Note that the '&' is not part of the statement.

 4.5.1 Example

The following trivial program illustrates the program formatting requirements and variable
declarations.

! Example Program

program example1

implicit none
integer :: radius, diameter
integer :: height=100, width=150
real :: area, perimeter
real :: length = 123.5, distance=413.761
real, parameter :: pi = 3.14159
character(11) :: msg = "Hello World"

write (*,*) "Greeting: ", msg

end program example1

In this example, a series of variables are defined (as examples) with most not used. The program will
display Greeting: Hello World when executed. The following chapters will address how to use
the variables to perform calculations and display results. Additional information regarding character
variables is provided in chapter 11.

 4.6 Declarations, Extended Size Variables

The size or range of a number that can be held in a Fortran variable is limited. Special declarations can
be used to provide variables with extended or larger ranges. Only integer and real variables are
addressed here.

18

Chapter 4 ◄ Fortran 95/2003/2008 – Basic Elements

 4.6.1 Integers

As previously noted, the range of an integer value can range between −2,147,483,648 and
+2,147,483,647. In the unlikely event that a larger range is required, a special declaration can be used
to extend the range. The kind specifier is used with the integer declaration.

For example, to declare a variable bignum with an extended range, the integer declaration would be as
follows:

integer*8 :: bignum
or

integer(kind=8) :: bignum

Both of these equivalent declarations use more space for the variables (8 bytes instead of the normal 4)
in order to provide a larger range. The extended range of integer variables declared with the *8 or
kind=8 is –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

 4.6.2 Real

As previously noted, the range is approximately ±1.7×10±38 which supports about 7 digits of
precision. If more precision is required, the kind specifier can be used.

For example, to declare a real variable rnum with an extended range, the declaration would be as
follows:

real*8 :: rnum
or

real(kind=8) :: rnum

Both of these equivalent declarations use more space for the variables (8 bytes instead of the normal 4)
in order to provide a larger range. The extended precision of real variables declared with the *8 or
kind=8 is approximately −2.2×10−308 to +1.8×10+308 which supports a much larger range of
number with about 15 digits of precision.

 4.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 4.7.1 Quiz Questions

Below are some quiz questions.

1) What are the five Fortran 95/2003/2008 data types?

2) What should a Fortran variable name start with?

19

Chapter 4 ► Fortran 95/2003/2008 – Basic Elements

3) What data type are each of the following numbers (integer or real)?

475 ____________
19.25 ____________
19123 ____________
5.0 ____________
123.456 ____________

4) Write the statements required to declare value as an integer and count as a real.

5) Write the statements required to declare rate as a real variable initialized to 7.5.

6) Write the statements required to declare e as a real constant initialized to 2.71828183.

 4.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the example1 example program, compile, and execute the program.

2) Update the example program (from 1) to display your name (instead of the 'Hello World'
message).

20

 5 Expressions
This section describes how to form basic Fortran 95/2003/2008 expressions and perform arithmetic
operations (i.e., add, subtract, multiple, divide, etc.). Expressions are formed using literals (actual
values), variables, and operators (i.e., +, -, *, /, etc.). The previous chapter provides an explanation of
what variables are and a summary of the five Fortran data types.

 5.1 Literals

The simplest expression is a direct value, referred to as a literal. Since literals are actual values, not
variables, they cannot be changed. There are various types of literal constants described in the
following sections that correspond to the Fortran data types.

 5.1.1 Integer Literals

The following are some examples of integer constants:

1
0
100
32767
+42

An integer must be a whole number (with no fractional component).

 5.1.2 Real Literals

The following are some examples of real constants:

1.0
0.25
3.14159

The real number should include the decimal point (i.e., the “.”). A real number includes the fractional
part, even if the fraction is 0. Fortran will accept a number with the “.” and no further digits. For example,
5. is the same as 5.0. All examples in this text will include the “.0” to ensure clarity.

 5.1.2.1 E-Notation

For larger real numbers, e-notation may be useful. The e-notation means that you should multiply the
constant by 10 raised to the power following the "E". This is sometimes referred to as scientific
notation.

21

Chapter 5 ► Expressions

The following are some real constants using e-notation:

2.75E6
3.3333E1

Hence, 2.75E5 is 2.75×105 or 275,000 and 3.333E-1 is 3.333×10−1 or 0.3333 or approximately
one third.

 5.1.3 Complex Literals

A complex constant is designated by a pair of constants (integer or real), separated by a comma and
enclosed in parentheses. Examples are:

(3.2, 4.1)
(1.0, 9.9E1)

The first number denotes the real part and the second the imaginary part. Although a complex number
always consists of two elements, it is considered a single value.

 5.1.4 Character Literals

A character constant is either a single character or a set of characters, called a string. A character is a
single character enclosed in quotes. A string consists of an arbitrary sequence of characters also
enclosed in quotes. Some examples include:

"X"
"Hello World"
"Goodbye cruel world!"
"Have a nice day"

Character and string constants (enclosed with quotes) are case sensitive. So, character “X” (upper-
case) is not the same as “x” (lower-case).

A problem arises if you want to have a quote in the string itself. A double quote will be interpreted as a
single within a string. The two quotes must be together (no spaces between). For example, the string:

"He said ""wow"" when he heard"

Would be displayed as

"He said "wow" when he heard"

The double-quote is sometimes referred to as an escape character. Strings and characters must be
associated with the character data type.

22

Chapter 5 ◄ Expressions

 5.1.5 Logical Constants

The fifth type is the logical constant. These can only have one of two values:

.true.

.false.

The dots enclosing the true and false are required.

 5.2 Arithmetic Operations

This section summarizes the basic arithmetic operations.

 5.2.1 Assignment

In programming, assignment is the term for setting a variable equal to some value. Assignment is
performed with an equal (=) sign. The general form is:

variable = expression

The expression may be a literal, variable, an arithmetic formula, or combination of each. Only one
assignment to a single variable can be made per line.

For example, to declare the variable answer1 as a real value,

real :: answer1

and to set it equal to 2.71828183, it would be:

answer1 = 2.71828183

The value for answer1 can be changed as often as needed. However, it can only hold one value at a
time.

 5.2.2 Addition

The Fortran addition operation is specified with a plus sign (+). For example, to declare the variables,
mysum, number1, number2, and number3,

integer :: mysum, number1=4, number2=5, number3=3

and calculate the sum,

mysum = number1 + number2

which will set the variable mysum to 9 in this example. The data types of the variables, integer in this
example, should be the same. Multiple variables can be added on one line. The line can also include
literal values. For example,

mysum = number1 + number2 + number3 + 2

which will set the variable mysum variable to 14. Additionally, it will write over the previous value of
9.

23

Chapter 5 ► Expressions

 5.2.3 Subtraction

The Fortran subtraction operation is specified with a minus sign (-). For example, to declare the
variables, ans, value1, value2, and value3,

real :: ans, value1=4.5, value2=2.5, value3=1.0

and calculate the difference,

ans = value1 – value2

which will set the variable ans to 2.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be subtracted on one line. The line can also include literal values.
For example,

ans = value1 value2 – value3

which will set the variable ans to 1.0. Additionally, it will over-write the previous value of 2.0.

 5.2.4 Multiplication

The Fortran multiplication operation is specified with an asterisk (*). For example, to declare the
variables, ans, value1, value2, and value3,

real :: ans, value1=4.5, value2=2.0, value3=1.5

and calculate the product,

ans = value1 * value2

which will set the variable ans to 9.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be multiplied on one line. The line can also include literal values.
For example,

ans = value1 * value2 * 2.0 * value3

which will set the variable ans to 27.0. Additionally, it will over-write the previous value of 9.0.

 5.2.5 Division

The Fortran division operation is specified with a slash symbol (/). For example, to declare the
variables, ans, value1, value2, and value3,

real :: ans, value1=10.0, value2=2.5, value3=2.0

and calculate the quotient,

ans = value1 / value2

which will set the variable ans to 4.0. The data types of the variables, real in this example, should be
the same. Multiple variables can be divided on one line.

24

Chapter 5 ◄ Expressions

For example,

ans = value1 / value2 / value3

which will set the variable ans to 2.0. Additionally, it will over-write the previous value of 4.0.

 5.2.6 Exponentiation

Exponentiation means “raise to the power of”. For example, 2 to the power of 3, or 23 is (2 * 2 * 2)
which is 8. The Fortran exponentiation operation is specified with a double asterisks (**).

For example, to declare the variables, ans and value1,

real :: ans, value1=2.0

and calculate the exponentiation,

ans = value1 ** 3

which will set the variable ans to 8.0. When using exponentiation, pay close attention to the data types.
For example, raising an integer variable to the power 0.5 would produce a truncated integer result.

 5.3 Order of Operations

Fortran follows the standard mathematical order of operations or precedence of operations. That is,
multiplication and division are performed before addition and subtraction. Further, in accordance with
mathematical standards, the exponentiation operation is performed before multiplication and division.

The following table provides a partial summary of the basic Fortran 95/2003/2008 precedence levels:

Precedence
Level

Operator Operation

1st - unary -

2nd ** exponentiation

3rd * / multiplication and division

4th + - addition and subtraction

For operations of the same precedence level, the expression is evaluated left to right. Parentheses may
be used to change the order of evaluation as necessary. For example, declaring the variables ans1,
ans2, num1, num2, and num3.

integer :: ans1, ans2, num1=20, num2=50, num3=10

and calculating the ans1 and ans2, as follows:

ans1 = num1 + num2 * num3
ans2 = (num1 + num2) * num3

will set to ans1 to 520 and ans2 to 700 (both integers).

25

Chapter 5 ► Expressions

 5.4 Intrinsic Functions

Intrinsic functions are standard built-in functions that are provided by Fortran. These include a rich set
of standard functions, including the typical mathematical standard functions. Intrinsic functions can be
used in expressions as needed. Most intrinsic functions accept one or more arguments as input and
return a single value.

 5.4.1 Mathematical Intrinsic Functions

The intrinsic or built-in functions include the standard mathematical functions such as sine, cosine,
tangent, and square root.

For example, the cosine of π is -1.0. Declaring and initializing the variables z and pi as follows,

real :: z
real, parameter :: pi = 3.14159

and then performing the calculation of the cosine the variable pi as follows,

z = cos(pi)

which will set z to -1.0. The variable pi is the input argument.

 5.4.2 Conversion Functions

Other intrinsic functions include functions to change the type of variables or values. The basic
conversion functions are as follows:

Function Explanation

real(<integer argument>) Convert the <integer argument> to a real
value

int(<real argument>) Convert the <real argument> to an integer,
truncates the fractional portion

nint(<real argument>) Convert the <real argument> to an integer,
rounds the fractional portion

For example, given the following variable declarations,

integer :: inum1=10, inum2, inum3
real :: rnum1, rnum2 = 4.8, rnum3 = 5.8

and calculate the rnum1, inum2, and inum3,

rnum1 = real(inum1)
inum2 = int(rnum2)
inum3 = nint(rnum3)

which will set to rnum1 to 10.0, inum2 to 4, and inum3 to 6.

26

Chapter 5 ◄ Expressions

 5.4.3 Summary

A summary of some of the more common intrinsic functions include:

Function Description

COS(W) Returns real cosine of real argument W in radians.

INT(A) Converts real argument A to integer, truncating (real part)
towards zero.

MOD(R1,R2) Returns remainder after division of R1 on division by R2.
Result, R1 and R2 should be all integer or all real types.

NINT(X) Returns the nearest integer to real value X (thus rounding
up or down as appropriate).

REAL(A) Converts integer argument A to real.

SIN(W) Returns real sine of real argument W in radians.

SQRT(W) Returns the real square root of real argument W; W must be
positive.

TAN(X) Returns the real tangent of real argument X in radians.

A more complete list of intrinsic functions in located in Appendix D.

 5.5 Mixed Mode

In general, mathematical operations should be performed on variables of the same type. When both
integer and real values or variables are used in the same statement, it is called mixed mode.

Real and integer operations:

1/2 = 0
1.0 + 1/4 = 1.0
1.0 + 1.0/4 = 1.25

Any integers values are converted to real only when mixed-mode is encountered on the same operation
type. Conversion may also occur on assignment.

Unexpected conversions can cause problems when calculating values. In order to avoid such problems,
it is strongly recommended to not use mixed-mode. There are a series of rules associated with mixed
mode operations. In some circumstances, these rules can be confusing. For simplicity, those rules are
not covered in this text.

If it is necessary to perform calculations with different data types, such as integers and reals, the
intrinsic or built-in conversion functions should be used to ensure correct and predictable results. This
also allows the programming greater control of when types are converted. In very complex
calculations, this would help ensure clarity and address precision issues. Further recommendations to
address highly precise calculations are not addressed in this text.

27

Chapter 5 ► Expressions

 5.6 Examples

Below is an example program that calculates velocity based on acceleration and time. The program
declares the appropriate variables and calculate the velocity.

program findvelocity
! Program to calculate the velocity from the
! acceleration and time

! Declare variables
implicit none
real :: velocity, acceleration = 128.0
real :: time = 8.0

! Display initial header
write (*,*) "Velocity Calculation Program"
write (*,*)

! Calculate the velocity
velocity = acceleration * time

write (*,*) "Velocity = ", velocity

end program findvelocity

Additional information regarding how to perform input and output in the next chapter. The comments
are not required, but help make the program easier to read and understand.

 5.7 Exercises

Below are some quiz questions and project suggestion based on this chapter.

 5.7.1 Quiz Questions

Below are some quiz questions.

1) What is the assignment operator?

2) What is the exponentiation operator?

3) How can an integer variable be converted to a real value?

4) How can a real variable be converted to a integer value?

5) What are the two logical constants?

6) List three intrinsic functions.

28

Chapter 5 ◄ Expressions

7) Write the single Fortran statement for each of the following formulas. You may assume all
variables are already declared as real values. Additionally, you may assume the variable PI is
set as a parameter and initialized to 3.14159.

x 1 = (π
6) (3a2+ 3b2+ c2)

x2 = −
2 a
c

cos (b) sin(b)

x3 =
−b + √(b2

−4 a c)
2a

 5.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the velocity program, compile, and execute the program. Change the declared values,
compile, and execute the modified program. Verify the results of both executions with a
calculator.

2) Write a program to calculate and display the difference between time as read from a sundial and
a clock (which is due to the irregular movement of the Sun). The difference can be calculated
with the Equation of Time7 which is as follows:

b = 2 π (n − 81) / 365
e = 9.87 sin (2 b) − 7.53 cos (b) − 1.5 sin(b)

Where, n is the day number. For example, n = 1 for January 1, n = 2 for January 2, and so on.
The program should read the value for n (1-365) from the user as an integer. The program
should perform the appropriate type conversions, perform the required calculations, and display
the original n value, the calculated b (for reference), and final e value which represents the time
difference in minutes. Test the program on a series of different values. Note, the formulas
provided are an approximation. For more accurate results, refer to the referenced Wikipedia
entry for the complete formula.

7 For more information, refer to: http://en.wikipedia.org/wiki/Equation_of_time

29

Chapter 5 ► Expressions

30

 6 Simple Input and Output
Simple, unstructured, input and output can be performed with the write and read statements as
explained in the following sections. In a later chapter, a more structured approach will be presented in
later sections.

 6.1 Output – Write

As noted from the first program, simple output can be performed by using the write statement. For
example:

write (*,*) "Hello World"

Which will send the message, referred to as a string, Hello World to the screen. The first “*” means
the default output device, which is the screen or monitor. The second “*” refers to the 'free format'.
Thus, the “(*,*)” means to send it to the screen in 'free format'.

The free format allows the Fortran compiler to determine the appropriate format for the information
being displayed. This is easy, especially when first getting started, but does not allow the program
much control over how the output will be formatted or displayed on the screen.

Additionally, the value held by declared variables can be displayed. For example, to declare the
variables num1, num2, and num3.

integer :: num1=20, num2=50, num3=10

the write statement to display num1 would be,

write (*,*) num1

The free format allows the Fortran compiler to determine the appropriate output format for the
information being displayed.

A write statement with no strings or variables,

write (*,*)

will display a blank line.

Multiple variables and strings can be displayed with one write statement. For example, using the
previous declarations;

write (*,*) "Number 1 = ", num1, "Number 2 = ", num2

The information inside the quotes is displayed as is, including capitalization and any spelling errors.
When the quotes are not used, it is interpreted as a variable. If the variable is not declared, a compiler
error will be generated. The value assigned to each variable will be displayed. A value must have been
assigned to the variable prior to attempting to display.

31

Chapter 6 ► Simple Input and Output

 6.1.1 Output – Print

In addition to the write statement, a print statement can be used. The print statement will send output
only to the screen. Thus, it is a more restrictive form of the write statement.

As with the write statement, multiple variables and strings can be displayed with one print statement.
For example, using the previous declarations,

print *,"Number 1 = ", num1, "Number 2 = ", num2

The information inside the quotes is displayed as is, including capitalization and any spelling errors.
When the quotes are not used, it is interpreted as a variable. If the variable is not declared, an error will
be generated. If the variable is defined, the value assigned to that variable will be displayed.

In general, all examples will use the write statement.

 6.2 Input – Read

To obtain information from the user, a read statement is used. For example, to declare the variables
num1, num2,

integer :: ans1, ans2

then read a value for ans1 from the user,

read (*,*) ans1

Which will read a number from the user entered on the keyboard into the variable ans1. The (*,*)
means to send it to read the information in 'free format'. The free format allows the Fortran compiler to
determine the appropriate format for the information being read.

Multiple variables can be read with one read statement. For example, using the previous declarations,

read (*,*) ans1, ans2

will read two values from the user into the variables ans1 and ans2.

Since the read is using free format, two numbers will be required. The numbers can be entered on the
same line with one or more spaces between them or on separate lines. The read will wait until two
numbers are entered.

When reading information from the user, it is usually necessary to provide a prompt in order to ensure
that the user understands that input is being requested by the program. A suitable write statement with
an appropriate string, followed by a read statement will ensure that the user is notified that input is
being requested.

For example, to read a date, a program might request month, day, and year as three separate variables.
Given the following declarations,

integer :: month, day, year

the program might prompt for and read the data in the following manner,

write (*,*) "Enter date (month, day, and year)"
read (*,*) month, day, year

32

Chapter 6 ◄ Simple Input and Output

Since the program is requesting three integers, three integers must be entered before the program
continues. The three numbers may be entered on one line with a single space between them, with
multiple spaces or tab between them, or even on three different lines as in the following examples:

Enter date (month, day, and year)
10 17 2009

Enter date (month, day, and year)
10
17
2009

Enter date (month, day, and year)
10 17 2009

The type of number requested here is an integer, so integers should be entered. Providing a real
number or character (e.g., letter) would generate an error. Later chapters will address how to deal with
such errors.

 6.3 Example

Below is an example program that calculates the area of a circle. The program will declare the
appropriate variables, read the radius, calculate the circle area, and display the result.

Program circle
! Program to calculate the area of a circle

! Declare variables
implicit none
real :: radius, area
real, parameter :: pi = 3.14159

! Display initial header and blank line
write (*,*) "Circle Area Calculation Program"
write (*,*)

! Prompt for and read the radius
write (*,*) "Enter Circle Radius"
read (*,*) radius

! Calculate the circle area
area = pi * radius**2

! Display result
write (*,*) "Circle Area: ", area

end program circle

33

Chapter 6 ► Simple Input and Output

The comments are not required, but help make the program easier to read and understand. If the
program does not work at first, the comments can aid in determining the problem.

 6.4 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 6.4.1 Quiz Questions

Below are some quiz questions.

1) What does the (*,*) mean?

2) What is the statement to output a message “Programming is Fun!”

3) What are the statements to declare and read the value for a person's age in years.

 6.4.2 Suggested Projects

Below are some suggested projects.

1) Type in the circle area program, compile and execute the program. Test the program on several
sets of input.

2) Modify the circle area program to request a circle diameter. The formula for circle area must be
adjusted accordingly. Recall that radius = diameter divided by two. Test the program on
several sets of input.

3) Type in the velocity program from the previous chapter and update to prompt for and request
input for the acceleration and time, and then display the results. Test the program on several
sets of input.

4) Write a Fortran program to read the length of the a and b sides of a right triangle and compute
the perimeter length. The program should prompt for input and display the values for sides a, b,
c, and the perimeter with appropriate headings.

The formulas for the c side and perimeter are:

c = √ a2
+b2

perimeter = a+b+ c

Test the program on several sets of input.

34

a

b

c

Chapter 6 ◄ Simple Input and Output

5) Write a Fortran program to compute geometric information for a kite. The program should read
the a, c and p lengths and compute the q length. The program should display
an appropriate prompt, read the values, compute the answer, and display the
original input and the final result.

The formula for the q length is as follow:

q = √ a2
−

p2

4
+ √ c2

−
p2

4

Test the program on several sets of input.

35

a

pq

c

Chapter 6 ► Simple Input and Output

36

 7 Program Development
Writing or developing programs is easier when following a clear methodology. The main steps in the
methodology are:

● Understand the Problem
● Create the Algorithm
● Implement the Program
● Test/Debug the Program

To help demonstrate this process in detail, these steps will be applied to a simple problem to calculate
and display the period of a pendulum.

As additional examples are presented in later chapters, they will be explained and presented using this
methodology.

 7.1 Understand the Problem

Before attempting to create a solution, it is important to understand the problem. Ensuring a complete
understanding of the problem can help reduce errors. The first step is to understand what input is
required and what information the program is expected to produce. In this example, the formula for the
period of a pendulum is:

Period = 2 π √ L
g (1 + 1

4
sin2(α

2))
Where:

g = 980 cm/sec2

π = 3.14159
L = Pendulum length (cm)
α = Angle of displacement (degree)

Both g (gravity) and π should be declared as a constants. The formula is a simplified version of the
more general case. As such, for very large, very small, or zero angle values the formula will not
provide accurate results. For this example, that is acceptable.

As shown, the pendulum is attached to a fixed point, and set into motion by displacing the pendulum
by an angle, α, as shown in the diagram. The program must define the constants for g and π, declare
the variables, display appropriate prompts, read the values for L and α, then calculate and display the
original input and the period of the pendulum with the given length and angle of displacement.

37

L

α

Chapter 7 ► Program Development

 7.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem. That
sounds good, but it is a fancy way of saying that an algorithm is just a step-by-step procedure to solve a
problem. Once the program is understood, the steps can be developed to solve that specific problem.
There can be multiple correct solutions to a given problem.

The process for creating an algorithm can be different for different people. In general, some time
should be devoted to thinking about a possible solution. This may involve working on some possible
solution on a scratch piece of paper. Once a possible solution is selected, that solution can be
developed into an algorithm. The algorithm can be written down, reviewed, and refined. This
algorithm is the outline of the program.

For this problem, the variables and constants must be declared, the applicable headers and prompts
displayed, and the values for L and α read from the user. The degree entered by the user should be
converted to radians8 which is required by the sin function. The formula to convert degrees to radians
is as follows:

radians = degrees∗
pi

180

Then the period can be calculated based on the provided formula and the results displayed.
Formalizing this, the following steps can be developed and written down as follows:

! declare variables
! real constants > gravity, pi
! reals > angle, length, alpha
! display initial header
! prompt for and read the length and angle values
! convert degrees to radians
! calculate the period
! display the results

While this is a fairly straightforward algorithm, more complex problems would require more extensive
algorithms. Examples in later chapters will include more complex programs. For convenience, the
steps are written as program comments. This will allow the addition of the code to the basic algorithm.

 7.3 Implement the Program

Based on the algorithm, the following program can be created.

program period
! Program to calculate the period of a pendulum

! declare variables
! real constants > gravity, pi
! reals > angle, length, alpha
implicit none

8 For more information, refer to: https://en.wikipedia.org/wiki/Radian

38

Chapter 7 ◄ Program Development

real :: angle, length, pperiod, alpha
real, parameter :: gravity=980.0, pi=3.14159

! display initial header
write (*,*) "Pendulum Period Calculation Program"
write (*,*)

! prompt for and read the length and angle values
write (*,*) "Enter Length and Angle values:"
read (*,*) length, angle

! convert degrees to radians
alpha = angle * pi / 180.0

! calculate the period
pperiod = 2.0 * pi * sqrt(length/gravity) * &

(1.0 + 1.0/4.0 * sin(alpha/2.0)**2)

! display the results
write (*,*) "The period is:", pperiod

end program period

The indentation is not required, but helps make the program easier to read. Note that the “2”, “1”, and
“4” in the algorithm are entered as 2.0, 1.0, and 4.0 to ensure consistent data typing (i.e., all reals).
When 1 divided by 4 is entered as “1/4” instead of “1.0/4.0” the result will be 0 because that would be
integer division.

 7.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works. The
testing will be based on the specific parameters of the program. In this example, each of the three
possible values for the discriminant should be tested.

C:\mydir> period

Pendulum Period Calculation Program

Enter Length and Angle values:
120.0 15.0

 The Period is: 2.20801973

C:\mydir>

For this program, the results can be verified with a calculator. A series of different values should be
used for testing. If the program does not work, the program comments provide a checklist of steps and
can be used to help debug the program.

39

Chapter 7 ► Program Development

 7.4.1 Error Terminology

In case the program does not work, it helps to understand some basic terminology about where or what
the error might be.

 7.4.1.1 Compiler Error

Compiler errors are generated when the program is compiled. This means that the compiler does not
understand the instructions. The compiler will provide a list of errors with the line number of each
error. It is recommended to address the errors from the top down. Resolving an error at the top can
clear multiple errors further down.

Typical compiler errors include misspelling a statement and/or omitting a variable declaration. For
example, if the correct Fortran statement “write (*,*)” is entered incorrectly as “wrote (*,*)”, an error
will be generated.

In this case, the compiler error displayed will appear as follows:

c:\mydir> gfortran o period period.f95
period.f95:13.1:

 wrote (*,*)
1
Error: Unclassifiable statement at (1)

The first digit, 13 in this example, represents the line number where the error occurred. Using a text
editor that displays line numbers, the statement that caused the error can be quickly found and
corrected.

If the declaration for the variable length is omitted, the error would appear as follows:

c:\mydir> gfortran o period period.f95
period.f95:17.18:

 read (*,*) length, angle
 1
Error: Symbol 'length' at (1) has no IMPLICIT type

In this case, the error is shown on line 18 (first digit after the “:”). However, the actual error is that the
variable length is not declared. Each error should be reviewed and evaluated.

 7.4.1.2 Run-time Error

A run-time error is something that causes the program to crash. For example, if a number is requested
and a letter is entered, it will cause a run-time error.

For example, the period program expects two real numbers to be entered. If the user enters letters, x
and y, in this example, an error will be generated during the execution of the program as follows:

40

Chapter 7 ◄ Program Development

c:\mydir> period
Pendulum Period Calculation Program

Enter Length and Angle values:
x y
At line 17 of file period.f95 (unit = 5, file = 'stdin')
Fortran runtime error: Bad real number in item 1 of list input

The program was expecting numeric values and letters were provided. Since letters are not meaningful
in this context, it is an error and the program “crashes” or stops with an error message.

Later chapters will provide additional information on how to deal with such errors. Until then,
providing the correct data type will avoid this kind of error.

 7.4.1.3 Logic Error

A logic error is when the program executes, but does not produce the correct result. For example,
coding a provided formula incorrectly or attempting to compute the average of a series of numbers
before calculating the sum.

For example, the correct formula for the period of a pendulum is as follows:

pperiod = 2.0 * pi * sqrt(length/gravity) * &
(1.0 + 1.0/4.0 * sin(alpha/2.0)**2)

If the formula is typed incorrectly or incompletely as follows:

pperiod = 2.0 * pi * sqrt(length/gravity) * &
(1.0 + 1/4 * sin(alpha/2.0)**2)

The 1 over 4 is entered as “1/4” which are interpreted as integers. As integers, “1/4” results in 0. The
compiler will accept this, perform the calculations, and provide an incorrect result.

The program would compile and execute as follows.

c:\mydir> period
 Pendulum Period Calculation Program

 Enter Length and Angle values:
120.0 15.0
 The period is: 2.19865513

However, an incorrect answer would be generated as shown. This is why testing the program is
required. Logic errors can be the most difficult to find.

One of the best ways to handle logic errors is to avoid them by careful development of the algorithm
and writing the code.

If the program has a logic error, one way to find the error is to display intermediate values. Further
information will be provided in later chapters regarding advice on finding logic errors.

41

Chapter 7 ► Program Development

 7.5 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 7.5.1 Quiz Questions

Below are some quiz questions.

1) What are the four program development steps?

2) What are the three types of errors?

3) If a program to compute the area of a rectangle uses a formula, height × height × width, what
type of error would this be?

4) Provide an example of that would generate a compiler error.

 7.5.2 Suggested Projects

Below are some suggested projects.

1) Type in the pendulum period calculation program, compile, and execute the program. Test the
program using several different input values.

2) Create a program to prompt for and read the circle area from the user and calculate the
circumference of a circle using the following formula:

circumference = 2 √ π CircleArea

Test the program using several different input values.

3) Create a program to prompt for and read the radius of a sphere from the user and calculate the
surface area of the sphere using the following formula:

sphere Surface Area = 4 π r2

Test the program using several different input values.

4) Create a program to prompt for and read the radius of a sphere from the user and calculate the
sphere volume using the following formula:

sphereVolume = (4 π / 3)r 3

Test the program using several different input values.

42

 8 Selection Statements
When writing a program, it may be necessary to take some action based on the outcome of comparing
the values of some variables. All programming languages have some facility for decision-making.
That is, doing one thing if some condition is true and (optionally) doing something else if it is not.

Fortran IF statements and/or CASE statements are used to allow a program to make decisions.

 8.1 Conditional Expressions

The first step is to compare two values, often contained in variables. The way two values are compared
is with relational operators. The variables are often referred to as operands. Relational operators are
used between variables or operands of similar types. That is real to real, integer to integer, logical to
logical, and character/string to character/string.

The basic relational operators are:

Relational
Operation

Relational Operator
(normal)

Relational Operator
(alternate)

Greater than > .gt.

Greater than or
equal

>= .ge.

Less than < .lt.

Less than or equal <= .le.

Equal to == .eq.

Not equal to /= .ne.

The normal form will be used for examples in this text. However, the alternate form may be used at
any time. The alternate forms may be required to support older Fortran programs.

A relational operation is used to form a conditional expression. The result of a conditional expression
must always result in either a true or false result.

The “==” (two equal signs) is used to compare. The “=” (single equal) is used for assignment (setting a
variable). The “==” does not change any values, while the “=” does.

For example, given the declaration of,

integer :: gameLives

it might be useful to know if the current value of gameLives is greater than 0.

43

Chapter 8 ► Selection Statements

In this case, the conditional expression would be,

(gamelives > 0)

Which will result in a true or false result based on the value of the variable gameLives.

 8.2 Logical Operators

Logical operators are used between two logical variables or two conditional expressions. They are:

Logical Operator Explanation

.and. the result is true if both operands are true

.or. the result is true if either operand is true

.not. logical negate (if true, makes false and if
false, makes true)

Logical operators are used to combine conditional expressions as needed to form a more complex
conditional expression. For example, given the declaration of,

integer :: gameLives, extraLives

it might be useful to know if the current value of gameLives and extraLives are both 0 which would
indicate the game is over. In this case, the relational operator would be AND with the complete
conditional expression,

((gameLives == 0) .and. (extraLives == 0))

which will result in a true or false result. Since the AND logical operation is used, the final result will
be true only if both conditional expressions are true.

Another way of check the status to determine if the game should continue might be,

((gameLives > 0) .or. (extraLives > 0))

which still results in a true or false result. However, since the OR logical operation is used, the final
result will be true if either conditional expressions is true.

The relational operators (e.g., <, <=, >, >=, ==, /=) have higher precedence than logical operators
(AND, OR, NOT). This means each of the smaller conditional expressions will be completed before
the local operation is applied.

A conditional expression can be a combination of multiple conditional expressions combined with
logical operators.

 8.3 IF Statements

IF statements are used to perform different computations or actions based on the result of a conditional
expression (which evaluates to true or false). There are a series of different forms of the basic IF
statement. Each of the forms is explained in the following sections.

44

Chapter 8 ◄ Selection Statements

 8.3.1 IF THEN Statement

The IF statement, using the conditional expression, is how programs make decisions. The general
format for an IF statement is as follows:

if (<conditional expression>) then
<fortran statement(s)>

end if

Where the <fortran statements> may include one or more valid Fortran statements.

For example, given the declaration of,

integer :: gameLives

based on the current value of gameLives, a reasonable IF statement might be;

if (gameLives == 0) then
write (*,*) "Game Over."
write (*,*) "Please try again."

end if

which will display the message “Game Over.” and “Please try again.” on the next line if the value of
gameLives is equal to 0.

 8.3.1.1 IF THEN Statement, Simple Form

Additionally, another form of the IF statement includes

if (<conditional expression>) <fortran statement>

In this form, only a single statement is executed if the conditional expression evaluates to true. The
previous example might be written as;

if (gameLives == 0) write (*,*) "Game Over."

In this form, no “then” or “end if” are required. However, only one statement can be executed.

 8.3.2 IF THEN ELSE Statement

The IF THEN ELSE statement expands the basic IF statement to also allow a series of statements to be
performed if the conditional expression evaluates to false.

The general format for an IF THEN ELSE statement is as follows:

if (<conditional expression>) then
<fortran statement(s)>

else
<fortran statement(s)>

end if

Where the <fortran statements> may include one or more valid Fortran statements.

45

Chapter 8 ► Selection Statements

For example, given the declaration of,

integer :: gameLives

based on the current value of gameLives is, a reasonable IF THEN ELSE statement might be:

if (gameLives > 0) then
write (*,*) "Still Alive, Keep Going!"

else
write (*,*) "Extra Life Granted."
gamesLives = 1

end if

Which will display the message “Still Alive, Keep Going!” if the value of gameLives is greater than 0
and display the message “Extra Life Granted.” if the value of gameLives is less than or equal to 0.

 8.3.3 IF THEN ELSE IF Statement

The IF THEN ELSE IF statement expands the basic IF statement to also allow a series of IF statements
to be performed in a series.

The general format for an IF THEN ELSE IF statement is as follows:

if (<conditional expression>) then
<fortran statement(s)>

else if (<conditional expression>) then
<fortran statement(s)>

else
<fortran statement(s)>

end if

Where the <fortran statements> may include one or more valid Fortran statements.

For example, given the declaration of,

integer :: gameLives

based on the current value of gameLives is, a reasonable IF THEN ELSE IF statement might be:

if (gameLives > 0) then
write (*,*) "Still Alive, Keep Going!"

else if (gameLives < 0) then
write (*,*) "Sorry, game over."

else
write (*,*) "Extra Life Granted."
gamesLives = 1

end if

Which will display the message “Still Alive, Keep Going!” if the value of gameLives is greater than 0,
display the message “Sorry, game over.” if the value of game lives is < 0, and display the message
“Extra Life Granted.” if the value of gameLives is equal to 0.

46

Chapter 8 ◄ Selection Statements

 8.4 Example One

As previously described, writing or developing programs is easier when following a methodology. As
the program become more complex, using a clear methodology is even more important. The main
steps in the methodology are:

● Understand the Problem
● Create the Algorithm
● Implement the Program
● Test/Debug the Program

To help demonstrate this process in detail, these steps will be applied to a familiar problem as an
example. The example problem is to calculate the solution of a quadratic equation in the form:

a x2
+ b x + c = 0

Each of the steps, as applied to this problem will be reviewed.

 8.4.1 Understand the Problem

Before creating a solution, it is important to understand the problem. Ensuring a complete
understanding of the problem can help reduce errors.

It is known that the solution to the quadratic equation is as follows:

x =
−b ± √(b2

−4a c)
2a

In the quadratic equation, the term b2
−4 a c is the discriminant of the equation. There are three

possible results for the discriminant as described below:

● If b2
−4 ac 0 then there are two distinct real roots to the quadratic equation. These two

solutions represent the two possible answers. If the equation solution is graphed, the curve
representing the solution will cross the x-axis (i.e., representing x=0) in two locations.

● If b2
−4ac = 0 then there is a single, repeated root to the equation. If the equation solution

is graphed, the curve representing the solution will cross the x-axis in one location.

● If b2
−4ac 0 then there are two complex roots to the equation. If the equation solution is

graphed, the curve representing the solution will not cross the x-axis and therefore there no real
number solution. However, mathematically the square root of a negative value will provide a
complex result. A complex number includes a real component and an imaginary component.

A correct solution must address each of these possibilities. For this problem, it is appropriate to use
real values.

47

Chapter 8 ► Selection Statements

The relationship between the discriminant and the types of solutions (two different solutions, one
repeated solution, or no real solutions) is summarized in the below table:

Positive Discriminant Zero Discriminant Negative Discriminant

Two real solutions One real solution Two complex solutions

Example:
 3x2−9x−3

Example:
 2x2−4x−2

Example:
 3x2

−3x−3

Two distinct x-intercepts One x-intercept No x-intercept

Root 1 = -0.3819
Root 2 = -2.618

Root 1 = -1.0 Root = -0.5 + 0.866i
Root = -0.5 – 0.866i

The examples provided above are included in the example solution in the following sections.

 8.4.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem. The
variables must be defined and an initial header displayed. For this problem, the a, b, and c values will
need to be read from the user. Formalizing this, the following steps can be developed.

! declare variables
! reals > a, b, c, discriminant, root1, root2
! display initial header
! read the a, b, and c values

Then, the discriminant can be calculated.

Based on the discriminant value, the appropriate set of calculations can be performed.

! calculate the discriminant
! if discriminant is 0,

48

X X

X

Chapter 8 ◄ Selection Statements

! calculate and display root
! if discriminant is >0,
! calculate and display root1 and root2
! if discriminant is <0,
! calculate and display complex root1 and root2

For convenience, the steps are written as program comments.

 8.4.3 Implement the Program

Based on the algorithm, the following program can be created.

program quadratic
! Quadratic equation solver program

! declare variables
! reals > a, b, c, discriminant, root1, root2
implicit none
real :: a, b, c
real :: discriminant, root1, root2

! display initial header
write (*,*) "Quadratic Equation Solver Program"
write (*,*) "Enter A, B, and C values"

! read the a, b, and c values
read (*,*) a, b, c

! calculate the discriminant
discriminant = b ** 2 – 4.0 * a * c

! if discriminant is 0,
! calculate and display root
if (discriminant == 0) then

root1 = b / (2.0 * a)
write (*,*) "This equation has one root:"
write (*,*) "root = ", root1

end if

! if discriminant is >0,
! calculate and display root1 and root2
if (discriminant > 0) then

root1 = (b + sqrt(discriminant)) / (2.0 * a)
root2 = (b sqrt(discriminant)) / (2.0 * a)
write (*,*) "This equation has two real roots:"
write (*,*) "root 1 = ", root1
write (*,*) "root 2 = ", root2

end if

49

Chapter 8 ► Selection Statements

! if discriminant is <0,
! calculate and display complex root1 and root2
if (discriminant < 0) then

root1 = b / (2.0 * a)
root2 = sqrt(abs(discriminant)) / (2.0 * a)
write (*,*) "This equation has a complex root:"
write (*,*) "root 1 = ", root1, "+i", root2
write (*,*) "root 2 = ", root1, "i", root2

end if

end program quadratic

The indentation is not required, but does help make the program easier to read.

 8.4.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works. The
testing will be based on the specific parameters of the program. In this example, each of the three
possible values for the discriminant should be tested.

C:\mydir> quad
 Quadratic Equation Solver Program
 Enter A, B, and C values
2 4 2
 This equation has one root:
 root = 1.0000000

C:\mydir> quad
 Quadratic Equation Solver Program

 Enter A, B, and C values
3 9 3
 This equation has a complex root:
 root 1 = 0.38196602
 root 2 = 2.6180339

C:\mydir> quad
 Quadratic Equation Solver Program
 Enter A, B, and C values
3 3 3
 This equation has a complex root:
 root 1 = 0.50000000 +i 0.86602539
 root 2 = 0.50000000 i 0.86602539
C:\mydir>

Additionally, these results can be verified with a calculator.

50

Chapter 8 ◄ Selection Statements

 8.5 SELECT CASE Statement

A SELECT CASE statement, often referred to as a CASE statement, is used to compare a given value
with preselected constants and take an action according to the first constant to match. A CASE
statement can be handy to select between a series of different possibilities or cases.

The select case variable or expression must be of type integer, character, or logical. A real type is not
allowed. Based on the selector, a set of one or more of Fortran statements can be executed.

The general format of the SELECT CASE statement is:

select case (variable)
 case (selector1)

<fortran statement(s)1>
 case (selector2)

<fortran statement(s)2>
.
.
.

 case (selectorn)
 <fortran statement(s)n>
 case default
 <fortran statement(s)default>
end select

where <fortran statement(s)-1>, <fortran statement(s)-2>, <fortran statement(s)-3>, ..., <fortran
statement(s)-n> and <fortran statement(s)-default> are sequences of one or more executable statements.
The selector-1, selector-2, selector-3, ..., and selector-n are called selector lists. Each CASE selector
list may contain a list and/or range of integers, character or logical constants, whose values may not
overlap within or between selectors. A selector-list is either a single or list of values, separated by
commas. Each selector list must be one of the following forms.

(value)
(value1 : value2)
(value1 :)
(: value2)

where value, value-1, and value-2 are constants or literals. The type of these constants must be
identical to that of the selector.

• The first form has only one value

• The second form means all values in the range of value-1 and value-2 (inclusive). In this form,
value-1 must be less than value-2

• The third form means all values that are greater than or equal to value-1

• The fourth form means all values that are less than or equal to value-2

In order, each selector expression is evaluated. If the variable value is the selector or in the selector
range, then the sequence of statements in <fortran statement(s)> are executed.

If the result is not in any one of the selectors, there are two possibilities:

51

Chapter 8 ► Selection Statements

• if CASE DEFAULT is there, then the sequence of statements in statements-DEFAULT are
executed, followed by the statement following END SELECT

• if the CASE DEFAULT is not there, the statement following END SELECT is executed

The constants listed in selectors must be unique. The CASE DEFAULT is optional. But with a CASE
DEFAULT, you are guaranteed that whatever the selector value, one of the labels will be used. The
place for CASE DEFAULT can be anywhere within a SELECT CASE statement; however, putting it at
the end would be more natural.

For example, given the declarations,

integer :: hours24, hours12, year
logical :: isAM

the following case statement,

select case (hours24)
case (0)

hours12 = 12
isAM = .true.

case (1:11)
hours12 = hours24
isAM = .true.

case (12)
hours12 = hours24
isAM = .false.

case (13:23)
hours12 = hours24 12
isAM = .false.

end select

might be useful to convert 24-hour time into 12-hour time. In this example, a logical variable isAM is
used to indicate AM (true) or PM (false).

Additionally, the selectors can be combined and separated by commas. For example, given the
declarations,

integer :: monthnumber, daysinmonth

the following case statement,

select case (monthnumber)
case (1,3,5,7,8,10,12)

daysinmonth = 31
case (2)

if (mod(year,4)==0) then
daysinmonth = 29

else
daysinmonth = 28

end if
case (4,6,9,11)

daysinmonth = 30

52

Chapter 8 ◄ Selection Statements

case default
write (*,*) "Error, month number not valid."

end select

might be useful to determine the number of days in a given month. The leap-year calculation is not
complete, but is adequate if the range of the year is sufficiently limited.

 8.6 Example Two

A typical problem is to assign grades based on a typical grading standard.

 8.6.1 Understand the Problem

For this example, the program will assign grades using the following grade scale:

A B C D F

 A>=90 80 - 89 70 - 79 60 - 69 <=59

The program will read three test scores, compute the average, and display the appropriate grade based
on the average.

 8.6.2 Create the Algorithm

The algorithm is the name for the ordered sequence of steps involved in solving the problem.

For this problem, the variables will be declared and an initial header displayed. Then, the test1, test2,
and test3 values will need to be read from the user.

! declare variables
! reals > test1, test2, test3
! integer > testave
! display initial header
! read the test1, test2, and test3 values

Next, the average can be calculated. The average will be converted to the nearest integer and, based on
that, the appropriate grade can be determined and displayed. Formalizing this, the following steps can
be developed.

! calculate the testave and convert to integer
! determine grade
! A >= 90
! B 80 to 89
! C 70 to 79
! D 60 to 69
! F <= 59

For convenience, the steps are written as program comments.

53

Chapter 8 ► Selection Statements

 8.6.3 Implement the Program

Based on the algorithm, the following program can be created.

program grades

! declare variables
implicit none
real :: test1, test2, test2
integer :: testave

! display initial header
write (*,*) "Grade Assignment Program"
write (*,*)
write (*,*) "Enter test 1, test 2 and test 3 values"

! read the test1, test2, and test2 values
read (*,*) test1, test2, test3

! calculate the average and convert to integer
testave = nint ((test1 + test2 + test3)/3.0)

! determine grade
! A >= 90, B 8089, C 7079, D 6069, F <= 59→ → → → →

select case (testave)
case(90:)

write (*,*) "Grade is: A"
case(80:89)

write (*,*) "Grade is: B"
case(70:79)

write (*,*) "Grade is: C"
case(60:69)

write (*,*) "Grade is: D"
case(:59)

write (*,*) "Grade is: F"
end select

end program grades

The indentation is not required, but does help make the program easier to read.

 8.6.4 Test/Debug the Program

Once the program is written, testing should be performed to ensure that the program works. The
testing will be based on the specific parameters of the program.

54

Chapter 8 ◄ Selection Statements

In this example, each of the three possible values for the discriminant should be tested.

C:\mydir> grade
 Grade Assignment Program

 Enter test 1, test 2 and test 3 values
70 80 90
 Grade is: B

C:\mydir>

The program should be tested with a series of data items to ensure appropriate grade assignment for
each grade. Test values for each grade should be entered for the testing.

 8.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 8.7.1 Quiz Questions

Below are some quiz questions.

1) List the six relational operators?

2) List the three basic logical operators?

3) For each of the following, answer .true. or .false. in the space provided.

boolean :: b1 = .true., b2=.false., b3=.true.
integer :: i=5, j=10

(b1 .or. b2) ______________

(b1 .or. b3) ______________

(b1 .and. b2) ______________

((b1 .or. b2) .and. b3) ______________

(b1 .or. (b2 .and. b3)) ______________

(.not. (i < j)) ______________

(j < i) ______________

4) Write the Fortran IF THEN statements to display the message "Game Over" if the integer
variable lives is ≤ to 0. You may assume the variable lives is already declared as an integer
and initialized.

55

Chapter 8 ► Selection Statements

5) Write the Fortran IF THEN statements to check the integer variable num and if the value is < 0,
take the absolute value of the number and display the message, "Variable num was made
positive". You may assume the variable num is already declared as an integer and initialized.

6) Write the Fortran statements to compute the formula z =
x
y

assuming the values for integer

variables x, y, and z are previously set. However, if y = 0, do not compute the formula, set z =
0, and display an error message, "Z not calculated". You may assume the variables x, y, and z
are already declared as an integers and initialized.

7) Write the statements required to compute the following formula using real variables f, x, and y.
Use a single IF THEN ELSE IF statement. You may assume the values for f, x, and y have
already been declared as real values and initialized.

f (x)={x2
∗ y if x≤0.0

x∗ y if x> 0.0

 8.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the quadratic equation program, compile, and execute the program. Provided input
values that will check each of the possible outputs.

2) Write a Fortran program to prompt for and read the year that a person was born. The year must
be between 1900 and 2015 (inclusive). If an invalid entry is read, the program should display
the message, "Sorry, that is not a valid year." and re-prompt. If the correct value is not provided
after 3 attempts, the program should display the message "Sorry, you're having problems.
Program terminated." and terminate. Once a valid year is read, the program should display the
year and a message "is a leap year" or "is not a leap year". Include appropriate declarations,
prompts, read statements, calculations, and write statements. Test the program on a series of
input values and verify that the output is correct.

3) Type in the grades program, compile, and execute the program. Test the program on a series of
input values that will check each grade.

4) Modify the grades program to handle the following grade assignment;

A A- B+ B B- C+ C C- D F

³94 93-90 89-87 86-84 83-80 79-77 76-74 73-70 69-60 £59

Compile, and execute the program. Test the program on a series of input values that will check
each grade.

56

Chapter 8 ◄ Selection Statements

5) Write a Fortran program to prompt and read fahrenheit as an integer, convert to celsius, and
display the result as a real. The formula to convert a fahrenheit temperature to a celsius
temperature is as follows:

celsius = (5
9) (fahrenheit − 32)

The fahrenheit value must be between -50 and 150 (inclusive). If the fahrenheit value is out of
range, the program should display an error message, "Temperature out of range", and terminate.
The calculations must be performed as real. Include program statements, appropriate
declarations, prompts, read statements, calculations, and write statements. Test the program on
a series of input values.

6) Write a Fortran to program that reads an item cost (real numbers) and amount tendered (real
number) and compute the correct change. The correct change should be returned as the number
of twenties, tens, fives, ones, quarters, dimes, nickels, and pennies. The main program should
ensure that the amount paid exceeds the item cost and, if not, display an appropriate error
message. Test the program multiple times using a series of input values.

7) Write a Fortran to program that reads a number from the user that represents a television
channel and then uses a CASE construct to determine the call letters for that station.

Channel Call Letters Affiliation

3 KVBC NBC

5 KVVU FOX

8 KLAS CBS

10 KLVX Public

13 KTNV ABC

The program should display an appropriate message if an invalid or unassigned channel is
entered. Test the program on a series of input values that will show each station.

57

Chapter 8 ► Selection Statements

58

 9 Looping
When a series of Fortran statements need to be repeated, it is referred to as a loop or do-loop. A
Fortran do-loop is a special control statement that allows a Fortran statement or set of statements to be
executed multiple times. This repetition can be based on a set number of times, referred to as counter
controlled, or based on a logical condition, referred to as conditionally controlled. Each of these
looping methods is explained in the following sections.

 9.1 Counter Controlled Looping

A counter controlled loop repeats a series of one or more Fortran statements a set number of times.
The general format of the counting loop is:

do count_variable = start, stop, step
<fortran statement(s)>

end do

where the count variable must be an integer variable, start, stop, and step are integer variables or
integer expressions. The step value is optional. If it is omitted, the default value is 1. If used, the step
value cannot be zero. The <fortran statement(s)> is a sequence of statements and is referred to as the
body of the do-loop. You can use any executable statement within a do-loop, including IF-THEN-
ELSE-END IF and even another do-loop. Before the do-loop starts, the values of start, stop, and step
are computed exactly once. More precisely, during the course of executing the do-loop, these values
will not be re-computed.

The count variable receives the value of start variable or expression. If the value of control-var is less
than or equal to the value of stop-value, the <fortran statement(s)> part is executed. Then, the value of
step (1 if omitted) is added to the value of control-var. At the end, the loop goes back to the top and
compares the values of control-var and stop-value.

If the value of control-var is greater than the value of final-value, the do-loop completes and the
statement following end do is executed.

For example, with the declarations,

integer :: counter, init=1, final=10, sum=0

the following do-loop,

do counter = init, final
sum = sum + counter

end do
write (*,*) "Sum is: ", sum

will add the numbers between 1 and 10 which will result in 55. Since the step was not specified, it is
defaulted 1.

59

Chapter 9 ► Looping

Another example, with the declarations,

integer :: counter, init=1, final=10, step=2

and the following do-loop,

do counter = init, final, step
 write (*,*) counter
end do

will display the odd numbers between 1 and 10 (1, 3, 5, 7, 9).

Another example would be to read some numbers from the user and compute the sum and average of
those numbers. The example asks the user how many numbers, reads that many numbers, computes
the sum, and the computes the average, and displays the results.

program calcAverage
implicit none
integer :: count, number, sum, input
real :: average

write (*,*) "Enter count of numbers to read"
read (*,*) count

sum = 0
do number = 1, count

read (*,*) input
sum = sum + input

end do

average = real(sum) / real(count)
write (*,*) "Average = ", average

end program calcAverage

The use of the function real() converts the sum and count variables from integers to real values as
required for the average calculation. Without this conversion, sum/count division would be interpreted
as dividing an integer by an integer, yielding an integer result.

A final example of a counter controlled loop is to compute the factorial of a positive integer. The
factorial of an integer n, written as n!, is defined to be the product of 1, 2, 3, ..., n-1, and n. More
precisely, n! = 1 * 2 * 3 * ... * n.

integer :: factorial, n, i

factorial = 1
do i = 1, n

factorial = factorial * i
end do

the above do-loop iterates n times. The first iteration multiplies factorial with 1, the second iteration

60

Chapter 9 ◄ Looping

multiplies factorial with 2, the third time with 3, ..., the ith time with i and so on. Thus, the values that
are multiplied with the initial value of factorial are 1, 2, 3, ..., n. At the end of the do-loop, the value of
factorial is 1 * 2 * 3 * ... * n which is n!.

 9.2 EXIT and CYCLE Statements

The exit and cycle statements are used to modify the execution of a do-loop. The exit statement is used
to exit a loop. The exit can be used alone, but it is typically used with a conditional statement to allow
exiting a loop based on a specific condition. The exit statement can be used in a counter controlled
loop or a conditionally controlled loop.

For example, given the following declarations,

integer :: i

the following loop,

do i = 1, 10
if (i == 5) exit
write (*,*) i

end do

will display the numbers from 1 to 4 skipping the remaining iterations. Since the variable i is checked
before the write statement, the value is not displayed with i is 5 and the loop is exited without
completing the remaining iterations. While it is possible to have multiple exit statements, typically
only one is used. However, multiple exit statements may be required for more complex problems.

The cycle statement will skip the remaining portion of the do-loop and start back at the top. The cycle
statement can be used in a counter controlled loop or a conditionally controlled loop. If the cycle
statement is used within a counter controlled loop, the next index counter is updated to the next
iteration, which could terminate the loop.

For example, given the following declarations,

integer :: i

the following loop,

do i = 1, 10
if (i == 5) cycle
write (*,*) i

end do

will display the numbers from 1 to 4 and 6 to 10.

 9.3 Counter Controlled Example

In this example we will write a Fortran program to find the difference between the sum of the squares
and the square of the sum of the first N natural numbers.

61

Chapter 9 ► Looping

 9.3.1 Understand the Problem

In order to find the difference between the sum of the squares and the square of the sum of the first N
natural numbers, we will need to find both the sum of the squares and the square of the sum. For
example, the sum of the squares of the first ten natural numbers is,

12
 22

 ⋯ 102
= 385

The square of the sum of the first ten natural numbers is,

1 2 ⋯ 102 = 552
= 3025

Hence the difference between the sum of the squares of the first ten natural numbers and the square of
the sum is 3025 - 385 = 2640.

The program will display the N value, the sum of the squares, the square of the sum, and the difference
for each number from 2 to a given N value. The program should prompt for and read the N value. The
program will display appropriate headers.

 9.3.2 Create the Algorithm

For this problem, first we will need to read the N value. Then, we will loop from 1 to the N value and
find both the sum of the squares and the square of the sum.

! declare variables
! integer > i, n, SumOfSqrs, SqrOfSums
! display initial header
! prompt for and read the n value
! loop from 1 to n
! compute sum of squares
! compute sums
! square the sums
! compute difference between sum of squares and square of sums
! display results

For convenience, the steps are written as program comments.

 9.3.3 Implement the Program

Based on the algorithm, the below program could be created.

program SOSdifference

! declare variables
implicit none
integer :: i, n, SumOfSqrs=0, SqrOfSums=0, difference

62

Chapter 9 ◄ Looping

! display initial header
write (*,*) "Example Program"
write (*,*) " Difference between sum of squares "
write (*,*) " and square of sums"
write (*,*)

! prompt for and read the n value
write (*,*) "Enter N value: "
read (*,*) n

! loop from 1 to n

do i = 1, n
! compute sum of squares
SumOfSqrs = SumOfSqrs + i**2

! compute square of sums
SqrOfSums = SqrOfSums + i

end do

! square the sums
SqrOfSums = SqrOfSums**2

! compute difference between sum of squares and square of sums
difference = SqrOfSums SumOfSqrs

! display results
write (*,*) "Difference: ", difference

end program SOSdifference

The spacing and indentation are not required, but help to make the program more readable.

 9.3.4 Test/Debug the Program

For this problem, the testing would be to ensure that the results match the expected values. Some
expected results can be determined with a calculator or a spreadsheet. If the program does not provide
the correct result, one or both of the intermediate results, SumOfSqrs or SqrOfSums, may be incorrect.
These values can be displayed with a temporary write statement to determine which might not be
correct. If the problem is still not found, the intermediate values calculated during the loop can also be
displayed with a write statement. The output can be reviewed to determine what the program is doing
(and what may be wrong).

 9.4 Conditional Controlled Looping

A conditional controlled loop repeats a series of one or more Fortran statements based on a condition.
As such, the loop may execute an indeterminate number of times.

63

Chapter 9 ► Looping

One form of the conditional loop is:

do while (conditional expression)
<fortran statement(s)>

end do

In this form, the conditional expression is re-checked at the top of the loop on each iteration.

A more general format of the conditional loop is:

do
<fortran statement(s)>

end do

As is, this loop will continue forever. Probably not so good. A selection statement, such as an IF
statement, and an exit statement would be used to provide a means to terminate the looping.

For example,

do
<fortran statement(s)>
if (conditional expression) exit
<fortran statement(s)>

end do

Would stop looping only when the conditional expression evaluates to true. The exit statement can be
used multiple times in different locations as needed. An IF statement, in any form, can be used for
either the exit or cycle statements.

For example, a conditional loop could be used to request input from the user and keep re-prompting
until the input is correct.

integer :: month

do
write (*,*) "Enter month (112): "
read (*,*) month
if (month >= 1 .and. month <= 12) exit
write (*,*) "Error, month must be between 1 and 12."
write (*,*) "Please reenter."

end do

This will keep re-prompting an unlimited number of times until the correct input (a number between 1
and 12) is entered.

64

Chapter 9 ◄ Looping

Since a counter controlled DO loop requires an integer loop counter, another use of conditional loops
would be to simulate a real counter. For example, to display the values from 1.5 to 4.5 stepping by
0.25, the following conditional loop could be used.

real :: value = 1.5

do while (value <= 4.5)
write (*,*) "Value = ", value
value = value + 0.25

end do

The values and step can be adjusted as needed.

 9.5 Conditionally Controlled Loop Example

In this example we will write a Fortran program that will read a valid date from the user. The date will
consist of three values, one for each of the month, day, and year. This example will use some of the
previous example fragments.

 9.5.1 Understand the Problem

For this limited example, we will request a date where the year is between 1970 and 2020. The month
must be between 1 and 12. The date will depend on the month since some months have 30 or 31 days.
February has either 28 days or 29 days if it is a leap year. Due to the limited allowable range of the
year, the determination of a leap year can be performed by checking if the year is evenly divisible by 4
(which implies a leap year).

 9.5.2 Create the Algorithm

For this problem, we will need to read the three values (month, day, and year). Then, we will check the
values to ensure that date is valid. Then, we will check the month first and then the year since it will be
used to check the date.

The months January, March, May, July, August, October, and December have 31 days. The months
April, June, September, and November have 30 days. February has 28 days unless the year is evenly
divisible by 4, in which case February has 29 days.

! declare variables; integer > month, day, year
! display initial header

! loop
! request month, day, and year
! read month, day, and year
! check month (112)
! check year (19702020)
! check day
! 1,3,5,7,8,10,12 31 days→
! 4,6,9,11 30 days→
! 2 if modulo of year/4 is 0 29 days → →

65

Chapter 9 ► Looping

! 2 if modulo of year/4 is not 0 28 days→ →
! if invalid, display error and loop to try again
! end loop
! display results

For convenience, the steps are written as program comments.

 9.5.3 Implement the Program

Based on the algorithm, the below program could be created.

program dateCheck

! declare variables
implicit none
integer :: month, day, year, dayMax

! display initial header
write (*,*) "Date Verification Example"

! loop
do

! request month, day, and year
write (*,*) "Enter month, day, and year"

! read month, day, and year
read (*,*) month, day, year

! check month (112)
if (month < 1 .or. month > 12) then

write (*,*) "Error, invalid month"
cycle

end if

! check year (19702020)
if (year < 1970 .or. year > 2020) then

write (*,*) "Error, invalid year"
cycle

end if

! check day
! 1,3,5,7,8,10,12 31 days→
! 4,6,9,11 30 days→
! 2 if modulo of year/4 is 0 29 days → →
! 2 if modulo of year/4 is not 0 28 days→ →

66

Chapter 9 ◄ Looping

select case (month)
case (1,3,5,7,8,10,12)

dayMax = 31
case (2)

if (mod(year,4)==0) then
dayMax = 29

else
dayMax = 28

end if
case (4,6,9,11)

dayMax = 30
end select

! if invalid, display error and loop to try again
if (day < 1 .or. day > dayMax) then

write (*,*) "Error, invalid day."
cycle

end if

exit

! end loop
end do

! display results
write (*,*) "Valid Date is:", month, day, year

end program dateCheck

The spacing and indentation are not required, but help to make the program more readable.

 9.5.4 Test/Debug the Program

For this problem, the testing would be to ensure that the results match the expected value. This will
require entering a series of different dates and verifying that the displayed output is correct for the
given input data.

 9.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 9.6.1 Quiz Questions

Below are some quiz questions.

1) What will happen when an exit statement is executed?

2) How many exit statements can be included in a loop?

67

Chapter 9 ► Looping

3) What will happen when a cycle statement is executed?

4) How many cycle statements can be included in a loop?

5) If there are multiple cycle statements in a loop, which one will be executed?

6) What is the output of the following Fortran statements. Assume sum and i are declared as
integers.

sum = 0
do i = 1, 5
 sum = sum + i
end do
write (*,*) "The SUM is:", sum

7) What is the output of the following Fortran statements. Assume i and j are declared as integer.

write (*,*) "start"
do i = 1, 3
 do j = 1, 2

write (*,*) i, " * ", j, " = ", (i*j)
 end do
end do
write (*,*) "end"

8) Are the following Fortran statements valid or invalid? If valid, what will happen?

do i = 3, 2
 write (*,*) i
end do

9) Are the following Fortran statements valid or invalid? If valid, what will happen?

do i = 3, 2
 if (i == 3) then

write (*,*) i
 end do
end if

10) What is the limit of statements that can be included in a loop?

11) When IF statements (any form) are nested inside a loop, what must be done to ensure the
statements are valid?

68

Chapter 9 ◄ Looping

 9.6.2 Suggested Projects

Below are some suggested projects.

1) Type in the difference program, compile, and execute the program. Test the program on a series
of different input values.

2) Type in the date check program, compile, and execute the program. Test the program on a
series of different input values.

3) Write a program to calculate the range that a ball would travel when it is thrown with an initial
velocity v0 and angle θ. Based on an initial velocity provided by the user, calculate the range
every 5 degrees for angles between 5 and 85 degrees. If we assume negligible air friction and
ignore the curvature of the earth, a ball that is thrown into the air from any point on the earth's
surface will follow a parabolic flight path.

The range (distance between the initial origin and final impact) is determined by the formula:

range = −
2v0

2

g
cos θ sin θ

where v0 is the initial velocity of the ball, θ is the angle of the throw, and g is the acceleration
due to the earth's gravity. The value for gravity should be defined as a constant and set to -9.81
meters per second.

Note, the intrinsic trigonometric functions work in radians, so the angle in degrees will need to
be converted to radians for the calculations. To convert degrees to radians:

radians = degrees (π
180)

Test the program on a series of different input values.

69

Origin Impact

Time θ

Chapter 9 ► Looping

70

 10 Formatted Input/Output
Fortran uses a FORMAT statement to allow control of how data is displayed or read. This is useful
when very specific input or output is required. For example, displaying money figures typically require
exactly two decimal places. There are format specifiers for each data type; integer, real, character,
logical, and complex.

 10.1 Format

The format specifiers, separated by commas, are contained in a pair of parenthesis as a string literal.
There are multiple possible ways to define a format. However, we will focus on the easiest, most direct
method. The format specifier will replace the second “*” in the read or write statements. For example:

read (*,'(<format specifiers>)') <variables>
write (*,'(<format specifiers>)') <variables/expressions>

The following sections explain the options for the format specifiers.

 10.2 Format Specifiers

The format specifiers tell the system exactly how the input or output should be handled. Each value
being read or written requires some amount of space. For example, an integer of four digits requires at
least four spaces or positions to print. Therefore, the number of positions to be used is a key part of the
specifier.

The following convention of symbols:

w → the number of positions to be used
m → the minimum number of positions to be used
d → the number of digits to the right of the decimal point
n → the number or count
r → repeat count

The following is a summary of the most commonly used format specifiers:

Description Specifier

Integers rIw or rIw.m

Real rFw.d

Logicals rLw

Characters rA or rAw

Horizontal Positioning (space) nX

71

Chapter 10 ► Formatted Input/Output

Horizontal Positioning (tab) Tn

Vertical Spacing /

In addition, each specifier or group of specifiers can be repeated by preceding it with a repeat count.
Format specifiers for complex numbers will be addressed in later chapters.

 10.3 Integer Format Specifier

The integer format specifier rIw or rIw.m is used tell the system exactly how many positions should be
used to either read or write an integer variable. The w is the width or how many total places are used.
If the number is negative, the sign uses a place. The m is optional and can be used to set a minimum
number of digits to display, which will display leading zeros if needed in order to display the minimum
number of digits. The r is the number of times the format specifier should be repeated.

A format of '(i6)' would look like:

x x x x x x

← w →

For example, given the declarations,

integer :: num1=42, num2=123, num3=4567

the following write statement can be used to display the value in variable num1 with no leading or
trailing spaces.

write (*,'(i2)') num1

Which will display “42”.

Multiple variables can be displayed. For example, to display the values in variables num1 and num2,
with no leading or trailing spaces.

write (*,'(i2,i3)') num1, num2

Which will display “42123” with no spaces between the two different values. However,

write (*,'(i2,i4)') num1, num2

will display “42 123” with one space between the values. Further,

write (*,'(i5,i5,i5)') num1, num2, num3

will display “ 42 123 4567” where each variable uses 5 spaces. And, finally,

write (*,'(i6.4)') num1

will display “ 0042”.

72

Chapter 10 ◄ Formatted Input/Output

 10.4 Real Format Specifier

The real format specifier rFw.d is used tell the system exactly how many positions should be used to
either read or write a real variable. The w is the width or how many total places are used, including the
decimal point. If the number is negative, the sign uses a place. The d is how digits are displayed after
the decimal point, which does not count the decimal point. The r is the number of times the format
specifier should be repeated.

A format of '(f6.2)' would look like:

x x x . x x

← d →

← w →

For example, given the declarations,

real :: var1=4.5, var2=12.0, var3=2145.5713

the following write statement can be used to display the value in variable var1 with no leading or
trailing spaces.

write (*,'(f3.1)') var1

Which will display “4.5” with no leading spaces. Multiple variables can be displayed. For example,
to display the values in variables var1 and var2.

write (*,'(f5.2,f8.3)') var1, var2

Which will display “ 4.50 12.000”. Another example with three variables, var1, var2, and var3, is
as follows:

write (*,'(f10.4,f10.4,f10.4)') var1, var2, var3

Which will display “ 4.5000 12.0000 2145.5713” where each variable uses 10 spaces
with each having exactly 4 digits after the decimal point.

Although we may print a number using as many positions as you want, this is only for input/output
formatting. The number of positions or size is not the precision (i.e., the number of significant digits)
of that number. The default precision of real numbers is about seven significant digits. This is the
precision of real numbers. However, we can print a real number using 50 positions in which 25
positions are for the fractional part. This is only a way of describing the appearance and does not
change the precision of real numbers.

 10.5 Logical Format Specifier

The logical format specifier rLw is used tell the system exactly how many positions should be used to
either read or write an logical variable. The w is the width or how many total places are used. The r is
the number of times the format specifier should be repeated. Since a logical variable can only be set to
the logical constants .true. or .false. the width will specify how many of the characters logical
constants will be read or displayed.

73

Chapter 10 ► Formatted Input/Output

For example, given the declarations,

logical :: dooropen=.true., windowopen=.false.

the following write statement can be used to display the value in the logical variables dooropen and
windowopen with no leading or trailing spaces. It should be noted that only a T or F will be displayed.

write (*,'(l1,1x,l1)') dooropen, windowopen

Which will display “T F”. Note, the l1 format is lower-case L and number 1.

The size or width can be adjusted as needed. For example, the following write statement,

write (*,'(l3,2x,l3)') dooropen, windowopen

will display “T F ”, which will display a total of 8 characters; a T followed by 2 spaces (from the
L3), 2 more spaces (from the 2X), and an F followed by two spaces (from the L3).

 10.6 Character Format Specifier

The real format specifier rAw is used tell the system exactly how many positions should be used to
either read or write a character variable. The w is the width or how many total places are used. If the
width is not specified, the existing length of the string is used. The r is the number of times the format
specifier should be repeated.

A format of '(a6)' would look like:

c c c c c c

← w →

For example, given the declarations,

character(len=11) :: msg = "Hello World"

the following write statement can be used to display the string in variable msg with no leading or
trailing spaces.

write (*,'(a11)') msg

Which will display “Hello World”. The count is not required when using the character format
specifier. For example, the statement,

write (*,'(a)') msg

will display the same “Hello World” string. Multiple variables or strings can be displayed. Also, the
count can be used to display a portion of the string. For example, to display the string in variable msg
and the string “Goodbye cruel world”.

write (*,'(a9,2x,a)') msg, "Goodbye cruel world"

Which will display “Hello Wor Goodbye cruel world” to the screen. Note that of the 11
character string, only the first 9 characters are displayed.

74

Chapter 10 ◄ Formatted Input/Output

 10.7 Advance Clause

The advance clause instructs the computer whether or not to advance the cursor to the next line. The
possible values are “yes” and “no”. If the advance clause is not included, the default value is “yes”.
This clause is useful when prompting for user input to allow the input to be entered on the same line as
the prompt. When using the advance clause, the free format (*) is not allowed. A format must be
included.

For example, the period program from the previous chapter included the statements:

! prompt for and read the n value
write (*,'(a)') "Enter count to sum: "
read (*,*) n

Which, when executed, the input is entered on the line following the prompt.

c:\mydir> sums
 Example Program
 Difference between sum of squares
 and square of sums

 Enter count to sum:
3
 Difference: 2640

When the advance clause is used with the setting of “no”, as follows:

! prompt for and read the n value
write (*,'(a)', advance="no") "Enter count to sum: "
read (*,*) n

The resulting execution would be as follows:

c:\mydir> sums
 Example Program
 Difference between sum of squares
 and square of sums

 Enter count to sum: 10
 Difference: 2640

Which allows the input to be entered on the same line as the prompt.

 10.8 Example

This example will read a date from the user (month, day, and year, on the same line), determine the day
of week (for that month/day/year). Then, the program will display the original input date (numeric
form) and the formatted date. The original input date will be displayed include leading 0's (i.e.,
01/01/2010).

75

Chapter 10 ► Formatted Input/Output

 10.8.1 Understand the Problem

For this problem, we will read the three numbers for the date from the user. The verification of the date
information is left as an exercise.

To calculate the day on which a particular date falls, the following algorithm may be used (the divisions
are integer divisions):

a = (14 month) / 12
y = year a
m = month + 12*a 2
daynum = [date + y + y/4 y/100 + y/400 + (31*m/12)] mod 7

The value of daynum is 0 for a Sunday, 1 for a Monday, 2 for a Tuesday, etc.

 10.8.2 Create the Algorithm

For this problem, first we will need to read the date. The verification of the date entered and error
checking is left as an exercise. Then, the original input date can be displayed, in numeric form,
formatted appropriately. For a date, this would mean two digits for the month, a “/”, two digits for the
day, a “/”, and four digits for the year. When the day is only one digit, for example 5, it is customary to
display a “05” so the program will ensure this occurs.

! declare variables
! integer > month, day, year
! display initial header
! prompt for month, day, and year
! read month, day, and year
! display formatted numeric month/day/year

Then the program can calculate the day of the week (based on the formula) and convert the resulting
number (0-6) into a date string and display the result.

! calculate day of week
! convert day of week (06) to string
! convert month (112) to string
! display formatted string for day, month, and year

For convenience, the steps are written as program comments.

 10.8.3 Implement the Program

Based on the algorithm, the below program could be created.

program dateFormatter

! declare variables
implicit none
integer :: month, day, year
integer :: a, m, y, d

76

Chapter 10 ◄ Formatted Input/Output

character(9) :: amonth, day_of_week

!
! display initial header

write (*,*) "Date Formatting Example"

! prompt for month, day, and year
write (*,'(a)',advance="no") "Date (month, day, year):"

! read month, day, and year
read (*,*) month, day, year

!
! display formatted numeric month/day/year

write (*,*) ""
write (*,*) "Input Date: "
write (*,'(5x, i2.2, a, i2.2, a, i4)') month, "/", &

day, "/", year

!
! calculate day of week

a = (14 month) / 12
y = year a
m = month + 12 * a 2
d = mod ((day + y + y/4 y/100 + y/400 + (31*m/12)), 7)

!
! convert dayofweek integer to dayofweek string

select case (d)
case (0)

day_of_week = "Sunday "
case (1)

day_of_week = "Monday "
case (2)

day_of_week = "Tuesday "
case (3)

day_of_week = "Wednesday"
case (4)

day_of_week = "Thursday "
case (5)

day_of_week = "Friday "
case (6)

day_of_week = "Saturday "
end select

77

Chapter 10 ► Formatted Input/Output

!
! convert month (112) to string

select case (month)
case (1)

amonth = "January "
case (2)

amonth = "February "
case (3)

amonth = "March "
case (4)

amonth = "April "
case (5)

amonth = "May "
case (6)

amonth = "June "
case (7)

amonth = "July "
case (8)

amonth = "August "
case (9)

amonth = "September"
case (10)

amonth = "October "
case (11)

amonth = "November "
case (12)

amonth = "December "
end select

!
! display formatted string for day, month, and year

write (*,'(/a)') "Formatted Date:"
write (*,'(5x, a, a, a, 1x, i2.2, a, i4/)') &

trim(day_of_week), ", ", trim(amonth), &
day, ", ", year

end program dateFormatter

The spacing and indentation is not required, but help to make the program more readable. The trim()
intrinsic function removes any trailing spaces from the input string. Additional information regarding
handling character data types is provided in the following section.

 10.8.4 Test/Debug the Program

For this problem, the testing would be to ensure that the output formatting is correct. Since there is no
error checking on the input, only correct dates should be entered. Test the program on a series of
different input values and verify that the output is correct for those input values.

78

Chapter 10 ◄ Formatted Input/Output

 10.9 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 10.9.1 Quiz Questions

Below are some quiz questions.

1) What is the format specifier for each of the following:
a) integer values
b) real values
c) logical values
d) horizontal spacing (i.e., spaces)
e) a new line
f) characters/strings

2) Describe the output of the following code fragment (1 pts each):
Note, show blanks with an _ (underscore) character.

write (*,'(a5)') "Hello World"
write (*,'(a)') "Hello World"

3) Describe the output of the following code fragment (3 pts):
Note, show blanks with an _ (underscore) character.

integer :: number = 5
write (*,'(i5.3)') number

4) What is the write statement and format specifier to output the integer variable num1 which
contains a value between 0 and 999 (right justified, no leading zero's, no additional spaces).

5) What is the write statement and format specifier to output the real value of pi which has been
initialized to 3.14159 (right justified, no additional spaces)?

6) What is the single write statement and format specifier to output "Programming" and "Is Fun!"
on two different lines?

7) What is the single write statement and format specifier to output "Enter Number:" and leave the
cursor on the current line?

 10.9.2 Suggested Projects

Below are some suggested projects.

1) Type in the date formatting program example, compile, and execute the program. Test the
program on a series of different input values and verify that the output is correct for those input
values.

79

Chapter 10 ► Formatted Input/Output

2) Update the date formatting program to perform complete error checking on the date entered.
That is, the program should check for appropriate values for month (between 1 and 12), check
for appropriate values for date (between 1 and 31), including checking for a valid date for the
specific month, and ensure that the value for year is between 1970 and 3000 (inclusive). For
example, April 31 is not a valid date. Additionally, the program should check for a leap year to
see if February has 28 or 29 days for that year. Test the program on a series of different input
values and verify that the output is correct for those input values.

3) Write a Fortran program that displays an amortization schedule. The program should read the
loan amount, annual interest rate, and the loan term in months (from a single line).

The formula for calculating the monthly payment is:

payment = amount∗ (irate∗
(1+ irate)term

((1+ irate)term
− 1))

Note, the annual interest rate, irate, in the formula must be converted to a monthly rate (divided
by 12) and then divided by 100 (to convert from percentage). During the time period, term,
some of each monthly payment will be used to pay the interest and some will be used to reduce
the outstanding balance. The monthly interest amount can be calculated by multiplying the
monthly interest rate times outstanding balance. The amounts must be lined up with only two
digits for cents. The payment number must display three digits, including leading zeros if
necessary. Test the program on a series of different input values and verify that the output is
correct for those input values.

Output will consist of appropriate headings and aligned and formatted columns for payment
number, monthly payment, principal paid, interest paid, and outstanding balance. A sum will
appear at the bottom of each column.

Loan amounts shall not exceed $250,000 and the maximum loan term shall not exceed 360
months. Be sure to follow the requirement that the three input variables will be formatted on a
single line.

4) Write a Fortran program that calculates and displays compounded interest. The program should
read the initial principal amount, interest rate percentage, and the term (number of years). The
program should display a summary of the input and the yearly compounded interest. Refer to
the example output for formatting.

The formula for compounding interest is:

value = principal(1+ interest) year

Note, the interest rate percentage read from the user must be converted to a number (i.e.,
divided by 100). The output must be formatted in a manner similar to the example output. This
includes ensuring that the dollar amounts are displayed with the appropriate two decimal points.
Test the program on a series of different input values and verify that the output is correct for
those input values.

80

 11 Characters and Strings
Fortran was originally developed for scientific and engineering application requiring significant
mathematical calculations. However, the Fortran 95/2003/2008 language includes extensive character
and string handling capabilities.

 11.1 Character and String Constants

A character is a single character or symbol, typically enclosed in quotes. For example, letters (“A”-”Z”
and “a” - “z”), punctuation (“!”, “,”, “?”, etc.) , symbols, (“@”, “#”, “>”, etc.), and digits “1”, “2” are
characters.

Some examples include:

"X"
"z"
"5"

Character and string constants are case sensitive. So, character “X” (upper-case) is not the same as “x”
(lower-case). When a digit is enclosed in quotes, it is treated as a character and consequently
arithmetic operations (addition, subtraction, etc.) are not allowed.

A string is a series of characters. A string consists of an arbitrary sequence of characters also enclosed
in quotes. Some examples include:

"Hello World."
"456"
"1 2 3"
"456?"
"Goodbye cruel world!!"
"Have a nice day?"

Since digits enclosed in quotes are not numeric values, the strings “1 2 3” and “456?” are allowed.

A problem arises if you want to have a quote in the string itself. A double quote will be interpreted as a
single within a string. The two quotes must be together (no spaces between). For example, the string:

"He said ""wow"" when he heard"

Would be displayed as

"He said "wow" when he heard"

The double-quote is sometimes referred to as an escape character. Strings and characters must be
associated with the character data type.

81

Chapter 11 ► Characters and Strings

 11.2 Character Variable Declaration

A character variable is a variable that can contain a set of 1 or more characters. Character variables
must have a defined length. All declarations are placed in the beginning of the program (after the
program statement). Declaring character variables formally defines the type and sets aside memory.

This is performed with a type declaration statement in the form of:

<type> :: <list of variable names>

For character variables, the type is “character”. For example, to define a character variable to hold the
day of week (i.e., “Wednesday”), the following declaration,

character(len=9) :: dayofweek

Would define the variable, dayofweek, with a maximum length of 9 possible characters.

Additional examples include:

character(len=3) :: symbol1, symbol2
character :: symbol3
character(1) :: symbol4, symbol5
character(30) :: symbol6, symbol7

The declarations can be entered in any order, however they must be at the beginning of the program.

The “len=” is optional and can be omitted. When the length is omitted entirely, the default length is set
to 1. This, “character”, “character(len=1), and “character(1)” are all the same.

When multiple variables are included in a single declaration, they must all be the same length. If
different lengths are required, separate declaration lines are required.

 11.3 Character Variable Initialization

It is possible to declare a character variable and to set an initial value at the same time. This
initialization is not required, but can sometime be convenient. For example, to define a character
variable, dayofweek, and set it to the day of week:

character(len=9) :: dayofweek="Wednesday"

Additional examples include:

character(9) :: thismonth="June", lastmonth, nextmonth="July"
character :: ltr1="A", ltr2="b"

Spaces or no spaces between the variables, equal signs, semicolons, and commas are allowed.
Variables initialized at declaration can be changed during program execution as needed.

 11.4 Character Constants

It is possible to declare a character variable, set its initial value, and ensure that the value cannot be
changed. For example, to define a character constant, language,

character(len=7), parameter :: language="English"

82

Chapter 11 ◄ Characters and Strings

To save counting characters, the “*” can be used. For example,

character(len=*), parameter :: university="UNLV"

This instructs the Fortran compiler to count the characters and set the appropriate length.

 11.5 Character Assignment

Assignment is a term for setting a character variable equal to some value (character or string).
Assignment is performed with an equal (=) sign. For example, given the declaration,

character(9) :: thismonth

A value can be assigned to the variable as follows,

thismonth = "September"

When character variables are assigned they are filled from the left and automatically padded with
blanks if necessary. For example, if the variable thismonth is reset

thismonth = "May"

The variable thismonth contains “May ” (e.g., “May” with an additional 6 blanks).

 11.6 Character Operators

The only character operator is “//” (concatenation) which simply concatenates two strings together. For
example,

"University of " // "Nevada Las Vegas"

Characters variables and literals may be used with concatenation. For example, given the following
declaration,

character(len=6) :: str1="ABCDEF", str2="123456"
character(len=12) :: str3

The following statements

str3 = str1 // str2

will set str3 to “ABCDEF123456”.

 11.7 Character Substrings

A substring is a subset or part of a string. A substring can be selected based on its position within the
string with the first character corresponding to 1, the second character corresponding to 2, and so forth.
The substring is selected or specified with a start and stop position in the form of (start:stop). The
stop must be greater than or equal to the stop position.

83

Chapter 11 ► Characters and Strings

For example, given the following declaration,

character(len=6) :: str1="ABCDEF", str2="123456", str3

The following statements

str3 = str1(1:3) // str2(4:6)

will set str3 to “ABC456”.

 11.8 Character Comparisons

The standard relational operators (“==”, “>”, “>=”, etc.) have some limitations when character data is
used. Simple comparisons, such as,

"A" < "D"
"ABC" == "ABC"

will work as expected. That is, both will evaluate to true.

However, when comparing, the following characters, each will evaluate to false.

"A" > "a"
"20" < "100"
"ABCD" <= "ABC"

This is a result of the relational operations referring to the assigned values (based on their location in
the ASCII table located in Appendix A).

Comparisons between digits, “0” - “9”, will work relative to each other. Comparisons between upper-
case letters, “A” - “Z”, will also work relative to each other. Comparisons between lower-case letters,
“a” - “z”, will also work relative to each other. Since the lower case letters are after the upper case
letters in the table an upper-case letter will be less than a lower-case letter. The digits are in the table
before the letters (upper- and lower-case), so they will evaluate as less than letters. This must be taken
into account when dealing with character comparisons.

 11.9 Intrinsic Character Operations

There are a number of character oriented intrinsic operations. Some of the basic character oriented
functions include:

Function Description

ACHAR(I) Returns the character represented by integer argument I
based on the ASCII table (Appendix A). Integer argument I
must be between 1 and 127.

IACHAR(C) Returns the integer value of the character argument C
represented by ASCII table (Appendix A).

LEN(STR) Returns an integer value representing the length of string
argument STR.

LEN_TRIM(STR) Returns an integer value representing the length of string

84

Chapter 11 ◄ Characters and Strings

argument STR excluding any trailing spaces.

TRIM(STR) Returns string based on the string argument STR with any
trailing spaces removed.

A complete list of intrinsic functions can be found in Appendix D.

 11.10 Example

This example will scan a string and convert all lower-case letter to upper-case.

 11.10.1 Understand the Problem

For this problem, the string will be read from the user with a maximum of 80 characters. Any lower
case letters encountered will be converted to upper-case. All other characters (digits, symbols, etc.)
will be left alone. To determine if a character is lower-case, we can see if it is between “a” and “z”.
The final string will be displayed back to the screen. Based on the ASCII table in Appendix A, there is
a specific, fixed difference between each upper and lower-case letter. Thus, in order to convert a lower-
case character to upper-case, that difference can be subtracted. However, in order to perform the
subtraction, each character needs to be converted into an integer (based on its value in the ASCII table).
The IACHAR() intrinsic function performs this conversion. After the conversion (subtraction), the
integer must be converted back into its corresponding character, which can be accomplished with the
ACHAR() intrinsic function. These functions work on a single character/integer, so each character will
need to be addressed individually.

 11.10.2 Create the Algorithm

For this problem, first we will need to prompt for and read the input string. Then any trailing blanks
will be removed and the final length can be determined. Based on that length, each character will be
accessed and converted if needed.

! declare variables
! integer > string1, string2, I, strlen
! display initial header
! prompt for string
! read string
! trim any trailing blanks
! determine length of string
! loop
! access each character
! if check lowercase ("a" – "z") > convert to uppercase
! display final string

For convenience, the steps are written as program comments.

85

Chapter 11 ► Characters and Strings

 11.10.3 Implement the Program

Based on the algorithm, the below program could be created.

program caseConverter

! declare variables
implicit none
integer :: i, strlen
character(80) :: string1

!
! display initial header

write (*,'(a,/)') "Case Conversion Example"

!
! prompt for string
! read string

write (*,'(a)',advance="no") "Enter String (80 char max): "
read (*,'(a)') string1

!
! trim any trailing blanks
! determine length of string

strlen = len(trim(string1))

! loop
do i = 1, strlen

! access each character
! if check lowercase > convert to uppercase

if (string1(i:i) >= "a" .and. string1(i:i) <= "z") then
string1(i:i) = achar(iachar(string1(i:i)) 32)

end if

end do

!
! display final string

write (*,'(/,a)') ""
write (*,'(a,/,2x,a,/)') "Final String: ", string1

end program caseConverter

The spacing and indentation are not required, but help to make the program more readable.

86

Chapter 11 ◄ Characters and Strings

 11.10.4 Test/Debug the Program

For this problem, the testing would ensure that the output string is correct for the given input.

For example, the following output,

c:\mydir> case
Case Conversion Example

Enter String (80 char max): Hello World!?

Final String:
 HELLO WORLD!?

Each lower-case letter was converted to upper-case while the upper-case, space, and punctuation were
unchanged. The program should be executed with a series of test inputs to verify the correct output.

 11.11 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 11.11.1 Quiz Questions

Below are some quiz questions.

1) What is the declaration for a character variable, msg, to contain the string “Hello World!”?

2) Given the following conditional expressions,

"D" > "c"
"100" < "20"
"Da" > "cA"
"20" < "10"
"d" > "C"
"20" < "100"
"ABBC" <= "ABCD"

state which will evaluate to true and which to false.

87

Chapter 11 ► Characters and Strings

3) Given the following Fortran statements,

character(len=6) :: str1="abcdef", str2="ABCDEF"
character(len=6) :: str3="123456", str4="78910"
character(len=12) :: astr1, astr2, astr3, astr4

astr1 = str1(1:3)
astr2 = str3(4:6)
astr3 = str3 // str4
astr4 = str2(4:6) // str3(1:3) // str1(2:3)

provide the resulting strings (astr1, astr2, astr3, and astr4).

4) How can the integer value (based on the ASCII table) of a character be obtained?

5) How can integer value be converted to a character (based on the ASCII table)?

 11.11.2 Suggested Projects

Below are some suggested projects.

1) Type in the case conversion example program, compile, and execute the program. Test the
program on a series of different input values and verify that the output is correct for those input
values.

2) Update the case conversion example program to convert any upper-case characters to lower-
case characters. Test the program on a series of different input values and verify that the output
is correct for those input values.

3) Write a program to read a string and count the vowels (“a”, “e”, “i”, “o”, and “u”). The
program should provide a count for each vowel and a total count of vowels. The program
should ensure that the vowels are counted for both upper and lower-case. Test the program on a
series of different input values and verify that the output is correct for those input values.

4) Write a program to read 5 strings (≤ 80 characters each) and display the strings in alphabetical
order. Test the program with a variety of different input strings, including digits, upper-case,
and lower-case characters. Test the program on a series of different input values and verify that
the output is correct for those input values.

88

 12 File Operations
File operations allow Fortran programs to read from files and/or write to files. The basic read and write
statements for file operations are the same as previously used with some additional information or
clauses.

 12.1 File Open

A file must be opened before information can be written or read from a file. In order to open a file, the
operating system needs some information about the file in order to correctly identify the file and
establish the access parameters (i.e., read, write, etc.). The open statement “clauses” provide that
information to the operating system.

The file open statement is as follows:

open (unit=<unit number>, file=<file name>, &
status=<file status>, action=<file action>, &
position=<file position>, iostat=<status variable>)

The following table summarizes the various open statement clauses.

Clause Explanation

unit Unit number for subsequent file operations (i.e.,
read, write, etc.). Typically an integer between 10
and 99.

file Name of file to be opened. Can be quoted or a
character variable.

status Status of file. Allowable options “old”, “new”, or
“replace”

“old” → the file must already exist.
“new” → a new file will be created.
“replace” → a new file will be created,
replacing an existing one if necessary.

action Action or open operation. Allowable options are
“read”, “write”, or “readwrite”.

“read” → read data from a file.
“write” → write data to a file.
“readwrite” → simultaneously read data from
and write data to a file.

position Position or place to start. Allowable options are
“rewind” (beginning), “append” (end).

89

Chapter 12 ► File Operations

iostat Name of variable for system to place a status code
indicating the status (success or failure) of the
operation. If the status variable is set to 0, the
operation is successful. If the status variable is set
to >0, an error occurred and the operation was
unsuccessful.

The unit number assigned should be between 10 and 99.

 12.2 File Write

The file must be opened for “write” or “readwrite” access before any information can be written to the
file. The general form of the write statement is as follows:

write (unit=<unit number>, fmt=<format statement>, &
advance="no", iostat=<variable>) &

<variables/expressions>

The write statement is the same as the simple write, however the unit number must be the number
assigned during the open operation. Normally, the next write will be on the next line. The
advance="no" is optional. If it is included, the next write will be on the same line where the previous
line stopped.

For example to open a file named temp.txt and place the string “Fortran Example” and the numbers 42,
and 3.14159 on separate lines, the following declarations:

integer :: myanswer=42, myopenstatus, mywritestatus
real, parameter :: pi=3.14159
character(15) :: mymessage="Fortran Example"
character(8) :: myfilename="temp.txt"

and the following Fortran statements,

open (unit=10, file=myfilename, status="replace", &
 action="write", position="rewind", &

iostat=myopenstatus)
if (myopenstatus > 0) stop "Cannot open file."
write (10, '(a/, i5/, f7.5)', iostat=mywritestatus) &

mymessage, myanswer, pi

would write the file information to the file.

 12.3 Stop Statement

The Fortran stop statement, as used in the previous example, will immediately terminate the program.
The optional string, as used in the previous example, will be displayed. This is useful for ending the
program when certain error critical conditions prevent any further progress.

90

Chapter 12 ◄ File Operations

 12.4 File Read

The file must be opened for “read” or “readwrite” access before any information can be read from the
file. The general form of the write statement is as follows:

read (unit=<unit number>, fmt=<format statement>, &
iostat=<variable>) <variables>

The read is the same as the simple read, however the unit number must be the number assigned during
the open operation. If the status variable is set to less than 0, that is an indication that the end of the file
has been reached. For example, if the file numbers.dat exists and has two numbers (on separate lines),
the following declarations,

integer :: num1, num2, myopenstatus, myreadstatus
character(11) :: myfilename="numbers.txt"

and the following Fortran statements,

open (unit=12, file=myfilename, status="old", &
action="read", position="rewind", &
iostat=myopenstatus)

if (myopenstatus > 0) stop "Cannot open file."

read (12, '(i5)', iostat=myreadstatus) num1
read (12, '(i5)', iostat=myreadstatus) num2

would read information from the file.

 12.5 Rewind

An open file can be reset back to the beginning. This might be useful if the file needs to be read twice.
The rewind statement will reset the file read pointer and subsequent reads will start back at the
beginning. The general form of a rewind statement is:

rewind(<unit number>)

Where the unit number was assigned during the initial open. The file must be open when the rewind is
executed for the rewind to work correctly.

 12.6 Backspace

When reading from a file, each successive read will return the next line from the file. The computer
keeps track of which lines have been read and will automatically return the next line. It is possible to
read a line and then backspace and re-read the line again with the backspace statement.

The general form of a backspace statement is:

backspace(<unit number>)

Where the unit number was assigned during the initial open. The file must be open when the backspace
is executed for the backspace to work. It should be noted that this operation is not used very often.

91

Chapter 12 ► File Operations

 12.7 Close File

An open file should be closed when it is no longer needed. The general form of a close statement is:

close(<unit number>)

Where the unit number was assigned during the initial open.

For the previous examples,

close(10)
close(12)

would be used to close the opened files.

 12.8 Example

In this example we will write a Fortran program to read an input file and write a line number and the
original line to an output file.

 12.8.1 Understand the Problem

For this problem, we will read the file names from the user and open the files. Then we will read a line
from the input file, and write the line number and line to the output file. When done, we will close the
file.

 12.8.2 Create the Algorithm

For this problem, first we will need to prompt for and read the file names from the user and ensure that
they open correctly. If the file cannot be opened, an error message will be displayed and the file names
will be re-read.

! declare variables
! integer > i, rdopst, wropst
! character > line
! display initial header
! loop
! prompt for input file name
! read input file name
! open input file (read access)
! if open unsuccessful, display error message
! otherwise, end loop
! loop
! prompt for output file name
! read output file name
! open output file (write access)
! if open unsuccessful, display error message
! otherwise, end loop

Once the file is open, a line will be read from the input file, and the line number and the line will be
written to the output file. For this example, we will assume that a line will have 132 or less characters.

92

Chapter 12 ◄ File Operations

This process will continue until there are no more lines in the input file.

! loop
! read line from input file
! if end of file, exit loop
! write line number and line to output file
! close files

For convenience, the steps are written as program comments.

 12.8.3 Implement the Program

Based on the algorithm, the below program could be created.

program linenumbers

! declare variables
implicit none
integer :: i, rdopst, wropst, rdst
character(30) :: rdfile, wrfile
character(132) :: line

! display initial header
write (*,*) "Line Number Example"

!
! prompt for input file name

do
write (*,'(a)', advance="no") "Input File Name: "

! read input file name
read (*,*) rdfile

! open input file (read access)
! if open unsuccessful, display error message
! otherwise, end loop
open(12, file=rdfile, status="old", &

action="read", position="rewind", &
iostat=rdopst)

if (rdopst==0) exit

write (*,'(a/,a)') "Unable to open input file.",&
"Please reenter"

end do

!
! prompt for output file name

do
write (*,'(a)', advance="no") "Output File Name: "

93

Chapter 12 ► File Operations

! read output file name
read (*,*) wrfile

! open output file (read access)
! if open unsuccessful, display error message
! otherwise, end loop

open(14, file=wrfile, status="replace", &
action="write", position="rewind", &
iostat=wropst)

if (wropst==0) exit

write (*,'(a, a/,a)') "Unable to open ", &
"output file.", "Please reenter"

end do

!

i = 1
do

! read line from input file
read (12, '(a)', iostat=rdst) line

! if end of file, exit loop
if (rdst >0) stop "read error"
if (rdst <0) exit

! write line number and line to output file
write (14, '(i10,2x,a)') i, line
i = i + 1

end do

! close files
close(12)
close(14)

end program linenumbers

The spacing and indentation are not required, but help to make the program more readable.

 12.8.4 Test/Debug the Program

For this problem, testing would involve executing the program with various input files and verifying
that the line numbers are correctly added.

 12.9 Exercises

Below are some quiz questions and project suggestions based on this chapter.

94

Chapter 12 ◄ File Operations

 12.9.1 Quiz Questions

Below are some quiz questions.

1) What must occur before a file can be read or written?

2) What is the range of the valid unit numbers for a file open?

3) For the following statements:

integer :: opnstat
character(20) :: filename="file.txt"

open (14, file=filename, status="old", action="read",
& position="rewind", iostat=opnstat)

if (opnstat > 0) then
write (*, *) "Error, can not open file."
stop

end if

a) What is the name of the file being opened?

b) What is the unit number that will be used for subsequent write operations?

c) Does the error message get printed if the file does not exist (yes/no)?

d) What does it mean when the status variable is > 0?

4) Assume the file answers.txt exists, has been successfully opened using unit number 20,
and contains the following data:

"line 1 data1=23 data2 =034 data3 =05123"

What is the read statement required to get data1, data2, and data3 into the integer variables
num1, num2, and num3 respectively?

 12.9.2 Suggested Projects

Below are some suggested projects.

1) Type in the line numbers program, compile, and execute the program. Test the program on a
number of different input values.

95

Chapter 12 ► File Operations

2) Imagine the movement of a small circle that rolls on the outside of a
rigid circle. Imagine now that the small circle has an arm, rigidly
attached, with a plotting pen fixed at some point. That is a epicycloid,
commonly called a Spirograph9. Write a Fortran 95/2003/2008
program to generate the (x,y) coordinates for a Spirograph drawing.

First, the program should prompt for an output file name, read the file name, and open the file.
If the file cannot be opened, the program should display an appropriate error message and re-
prompt. Next, the program should prompt for a read radius 1 (fixed circle), radius 2 (moving
circle), and offset position (rigid arm length). The radius 1, radius 2, and offset position values
must be between -100 and +100 (inclusive). If any value is out of range, the program should re-
prompt. If the user does not enter a valid file name or number of input values after three tries,
the program should terminate with an appropriate error message. That is, three errors are
acceptable, but if a fourth error is made, the program should terminate. The prompts and
subsequent reads should be on the same line (see example).

Then, the program should generate (x,y) points based on one the following formulas:

x=((radius1+ radius2) ∗ cos (step)) + (offsetposition∗ cos((radius1+ radius2) ∗
step
radius2))

y=((radius1+ radius2) ∗ sin (step)) + (offsetposition∗ sin ((radius1+radius2) ∗
step
radius2))

The step should start at 0.0 and stop at 360.0, stepping by 0.1. All writes should use a formatted
output (not the '*'). Then the program should close the output file and inform the user the
plotting is completed. Test the program on a number of different input values.

3) Write a Fortran program that plays the Chaos Game. To play the Chaos Game, plot 3 points A,
B, C, and an arbitrary initial point X1. Then, generate a random number between 1 and 3
representing A (1), B (2), or C (3). If A comes up, plot the midpoint of the line joining X1 to A.
If B comes up, plot the midpoint of the line joining X1 to B; the case with C is similar. Call this
new point X2. Generate another random number between 1 and 3. Plot the midpoint of the line
joining X2 to either A, B or C depending on the random number. Call this new point X3.
Repeat this process N times. Test the program on a number of different input values.

Refer to Appendix C for more information regarding generating random numbers.

Note, the correct output of this program is shown on the cover page. The image is referred to as
a Serpinski Triangle10.

9 For more information, refer to: http://en.wikipedia.org/wiki/Spirograph
10 For more information, refer to: https://en.wikipedia.org/wiki/Sierpinski_triangle

96

 13 Single Dimension Arrays
An array is a collection or set of data. A variable can hold a single value. An array can hold multiple
values. The type (i.e., integer, real, etc.) of each item in the array must be the same. In order to access
specific elements an index or subscript is used. The index specifies which element or value in the array
is being accessed.

An array is considered a direct access structure since any element can be accessed directly without
accessing any other elements.

The most basic form of an array is a single dimension array. A single dimension array can be thought
of as a single column in a spreadsheet. The column name, like A, is the array name and the row
number is like the index. For example, a spreadsheet column might appear as follows:

A single dimension array is logically the same and might look like:

Index Array Name

1 <value>

2 <value>

. . .

. . .

n-1 <value>

n <value>

The array name is chosen by the programmer and thus is not limited to A. The specific syntax requires
an index or subscript to specify which element of the array to access. By default, the first element is at
index=1, the next at index=2, and so forth. This can be changed if needed.

97

Chapter 13 ► Single Dimension Arrays

 13.1 Array Declaration

An array must be declared before use. The type of the array is defined followed by the size or
dimension. There are two ways to declare an array; static and dynamic.

 13.1.1 Static Declaration

A static declaration means that the size or dimension of the array must be defined initially (before the
program is compiled). The size definition cannot be altered. The general form an array declaration is,

type, dimension(extent) :: name1, name2, …, nameN

where type is the data type (integer, real, etc.) of the array. The dimension specifies the extent or size,
and name1, name2, …, nameN are names of one or more arrays being declared.

For example, to declare an array of 1000 integers,

integer, dimension(1000) :: nums1

will create an array, nums1, with space for 1000 integer values.

In this example the extent is 1000 which means that the array indexes will range from 1 to 1000. The
extent can be changed by specifying the extent as:

smallerinteger : largerinteger

When only one number is specified, the smaller-integer is assumed to be 1. When both numbers are
specified, the array index's will range between the smaller-integer and the larger-integer. For example,
a declaration of:

integer, dimension(5:5) :: ranges

will create an array, ranges, with indexes between -5 and 5 (inclusive). Using index values not within
the specified range will result in an error. If the compiler option, fcheck=bounds, to verify subscript
bounds is used, this error will be trapped at run-time. However, if the run-time bounds checking is not
turned on, the error may not be obvious and could result in unrelated problems such as other variables
being over-written or even security holes in some cases.

 13.1.2 Static Array Declaration

Static array declarations are appropriate when the maximum size of the array is known ahead of time.
Once the array is declared, the size cannot be extended. A static array is initialized and the size of set
during the declaration. For example, to declare an array named costs with 4 elements and set the four
elements to 10.0, 15.0, 20.0, and 25.0,

real, dimension(4) :: costs=(/10.0, 15.0, 20.0, 25.0/)

The numbers, enclosed between the “/”s are assigned in order. So, costs(1) is set to 10.0, costs(2) is set
to 15.0, costs(3) is set to 20.0, and costs(4) is set to 25.0.

98

Chapter 13 ◄ Single Dimension Arrays

Additionally, after declaration, it is possible to initialize all elements of an array to a single value with
an assignment statement. For example,

costs = 0.0

will set all four elements of the costs array to zero.

 13.1.3 Dynamic Array Declaration

A dynamic declaration means that the size or dimension of the array can be set when the program is
executed. Dynamic array declarations are appropriate when the maximum size of the array is not
known ahead of time and can be determined based on information obtained when the program is
executing. However, once set, the size cannot be altered. When using a dynamic declaration, the array
type and name must be defined. This only specifies the name and type of the array, but does not
reserve any space for the array. During the program execution, the array must be allocated. The
allocation will create the space for the array. Only after the array has been allocated can it be used.

For example, to declare an array,

integer, dimension(:), allocatable :: nums2

reserves the name nums2, but does not reserve any space for values.

 13.1.3.1 Dynamic Array Allocation

To allocate the space for the array, the allocate statement must be used. Before an array can be allocated, it
must be declared as allocatable. The general form of the allocate statement is:

allocate(<array name>, stat=<status variable>)

The status variable must be an integer variable and will be used by the system to place a status code
indicating the status (success or failure) of the operation. If the status variable is set to 0, the allocation
was successful. If the status variable is set to >0, an error occurred and the allocation was not
successful.

For example, given the declarations,

integer, dimension(:), allocatable :: nums2
integer :: allst

the following allocate statement allocates space for 1000 numbers in array nums2,

allocate(nums2(1000), stat=allst)

The size, 1000 in this example, can be a variable, but it must be an integer. The status variable allst
will be set to 0 if the allocation is successful. However, if the status variable allst is set to a value >0,
an error occurred and the allocation was not successful.

99

Chapter 13 ► Single Dimension Arrays

 13.2 Accessing Array Elements

To access elements in an array, the array name and an index must be specified. The index must be an
integer or integer expression and enclosed in parentheses. The general format is,

arrayname(<integer expression>)

For example, given the declaration,

real, dimension(10) :: times

would declare an array with ten elements. To place a value 121.3 in the first array element,

times(1) = 121.3

And to place 98.125 in the fifth element,

times(5) = 98.125

The index in these examples is a literal. However, the index can be an integer variable or integer
expression.

For example, given the following declarations,

real, dimension(10) :: temps
integer :: i=5, j

would declare an array with ten elements. To place a value 98.6 in the fifth array element,

temps(i) = 98.6

To access the fifth element, subtract 3.0 and place the result in the sixth element,

temps(i+1) = temps(i) – 3.0

To set all elements of the temps array to 0.0, a loop could be used as follows:

do i = 1, 10
temps(i) = 0.0

end do

Array elements can be accessed as many times as needed.

 13.2.1 Array Bounds

When an array is declared for a specific size, only that many elements can be used. For example, if an
array is declared with 10 elements, only 10 elements are available. Given the following declaration,

real, dimension(10) :: expArr

would declare an array with ten elements.

100

Chapter 13 ◄ Single Dimension Arrays

To place a value 42.5 in the first array element and 73.5 in the last array element.

expArr(1) = 42.5
expArr(10) = 73.5

However, if an array element is accessed that outside the declared bounds, it is an error. For example,

expArr(11) = 99.5

would be an error. These kinds of errors would be difficult to find. However, if the bounds checking is
turned on (as noted in chapter 3), when the program is executed the error will be noted.

To compile with bounds checking turned on, the following compile command should be used:

C:\fortran> gfortran fcheck=bounds o hw hw.f95

This command will tell the 'gfortran' compiler to include bounds checking.

In general, using the bounds checking can slow a program down. However, this is not a significant
issue when learning to write programs.

 13.3 Implied Do-Loop

An implied do-loop is a special form of a loop that can be performed on one line. This can be useful
for accessing elements in an array. For example, assuming i is declared as an integer, the following
code,

do i = 1, 5
write (*,*) nums(i)

end do

would display each element of the 5 element array to the screen.

The same thing can be accomplished with an implied do-loop as follows:

write (*,*) (nums(i), i=1,5)

Both forms of the loop will display the same results. If necessary, a step can be used. If the step is
omitted, as in the example, the step is defaulted to 1.

 13.4 Initializing Arrays

An array can be initialized when it is declared. Each element in the array can be initialized to a single
value or each element to a different value. The following declaration,

real, dimension(10) :: numbers = 1.0

will initialize each of the 10 elements in the array numbers to 1.0.

To initialize each element to a different value, each value needs to be specified.

101

Chapter 13 ► Single Dimension Arrays

For example, the following declaration,

real, dimension(5) :: numbers = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /)

will initialize each of the 5 elements in the array numbers to 1.0, 2.0, 3.0, 4.0, and 5.0 respectively.

The implied do-loop may also be used. For example, in the following declaration,

integer, dimension(5) :: numbers = (/ (i, i=1,5) /)

will initialize each of the 5 elements in the array numbers to 1, 2, 3, 4, and 5 respectively.

 13.5 Example

In this example we will write a Fortran program to read a series of numbers from a file and compute
some statistical information including minimum, maximum, sum, average, and standard deviation11.

The standard deviation is calculated as follows:

standard deviation = √ ∑i=1

n

(average− list(i))2

n

As such, the average must be calculated before the standard deviation.

 13.5.1 Understand the Problem

The program will display an initial header and get the file name. Specifically, we will need to prompt
for the file name, read the file name, and verify that the file is available by attempting to open the file.
Then, the program will read the numbers from the file and store them in an array. For this problem,
there will be no more than 5000 numbers in the file. After the numbers are in the array, the minimum,
maximum, and sum will be found. Next, the average can be computed. Finally, the standard deviation
can be calculated in steps, the first of which is computing the inner loop. The numbers should be
displayed, ten per line, followed by the results.

 13.5.2 Create the Algorithm

After the header is displayed, the program should prompt for the file name, read the file name, and
verify that the file is available by attempting to open the file. If the file cannot be opened, the program
will display an error message and re-prompt. If the user does not enter correct information after three
tries, the program should terminate with an appropriate error message. That is, three errors are
acceptable, but if a fourth error is made, the program will terminate.

! declare variables
! integer > i, ncount, errs, opstat, rdstat
! real > min, max, sum, stdsum
! real > array for
! character > filename(20)

11 For more information, refer to: http://en.wikipedia.org/wiki/Standard_deviation

102

Chapter 13 ◄ Single Dimension Arrays

! display initial header
! loop
! prompt for file name
! read file name
! attempt to open file
! if file open successful, exit loop
! display error message
! count error
! if >3 errors, terminate program
! end loop

Then, the program will loop to read the numbers from the file and store them in an array. The program
will check for any read errors (status variable > 0) and for the end of file (status variable < 0).

If a valid number is read, it will be counted and placed in the array.

! loop
! read from the file
! if error on read, terminate program
! if end of file, exit loop
! increment number counter
! place number in array
! end loop

Next, another loop will be used to find the minimum, maximum, and sum of the numbers. To find the
minimum and maximum values, we will assume that the first element in the array is the minimum and
maximum. Then, the program will check each number in the array. If the number from the array is less
than the current minimum value, the current minimum value will be updated to the new value. Same
for the maximum, if the number from the array is more than the current maximum value, the current
maximum value will be updated to the new value.

! initialize min, max, and sum
! loop
! check for new min
! check for new max
! update sum
! end loop

Once the sum is available, the average can be computed. Finally, a loop will be used to calculate the
summation for the standard deviation.

! calculate average
! initialize stdsum
! loop
! calculate average – array item
! update stdsum
! end loop

Once the summation is completed, the standard deviation can be computed and the final results
displayed. As per the example specifications, the numbers should be displayed 10 per line.

103

Chapter 13 ► Single Dimension Arrays

One way to handle this is to display numbers on the same line (with the advance=“no” clause) and
every 10th line display a new line.

! calculate standard deviation
! loop to display numbers, 10 per line
! display results
! end program

For convenience, the steps are written as program comments.

 13.5.3 Implement the Program

Based on the algorithm, the below program could be created.

program standardDeviation

! declare variables
implicit none
integer :: i, ncount=0, errs=0, opstat, rdstat
real :: num, min, max, sum, average, stdsum, std
real, dimension(5000) :: numbers
character(20) :: filename

! display initial header
write (*,*) "Standard Deviation Program Example."

! loop
do

! prompt for file name
write (*,'(a)', advance="no") "Enter File Name:"

! read file name
read (*,*) filename

! attempt to open file
open(42, file=filename, status="old", &

action="read", position="rewind", &
iostat=opstat)

! if file open successful, exit loop
if (opstat==0) exit

! display error message
write (*,'(a)') "Error, can not open file."
write (*,'(a)') "Please reenter."

! count error
errs = errs + 1

104

Chapter 13 ◄ Single Dimension Arrays

! if >3 errors, terminate program
if (errs > 3) then

write (*,'(a)') "Sorry you are having problems."
write (*,'(a)') "Program terminated."
stop

end if

! end loop
end do

! loop
do

! read file
read (42, *, iostat=rdstat) num
! if error on read, terminate program
if (rdstat>0) stop "Error on read."

! if end of file, exit loop
if (rdstat<0) exit

! increment number counter
ncount = ncount + 1

! place number in array
numbers(ncount) = num

! end loop
end do

! initialize min, max, and sum
min = numbers(1)
max = numbers(1)
sum = 0.0

! loop
do i = 1, ncount

! check for new min and new max
if (numbers(i) < min) min = numbers(i)
if (numbers(i) > max) max = numbers(i)

! update sum
sum = sum + numbers(i)

! end loop
end do

! calculate average
average = sum / real(ncount)

105

Chapter 13 ► Single Dimension Arrays

! initialize stdsum
stdsum = 0.0

! loop
do i = 1, ncount

! calculate (average – array item)^2 and update sum
stdsum = stdsum + (average numbers(i))**2

! end loop
end do

! calculate standard deviation
std = sqrt (stdsum / real(ncount))

! display results
write (*,'(a)') ""
write (*,'(a)') "Results:"

do i = 1, ncount
write (*,'(f8.2,2x)', advance="no") numbers(i)
if (mod(i,10)==0) write (*,*)

end do

write (*,'(a, f8.2)') "Minimum = ", min
write (*,'(a, f8.2)') "Maximum = ", max
write (*,'(a, f8.2)') "Sum = ", sum
write (*,'(a, f8.2)') "Average = ", average
write (*,'(a, f8.2)') "Standard Deviation = ", std

end program standardDeviation

The spacing and indentation are not required, but help to make the program more readable.

 13.5.4 Test/Debug the Program

For this problem, the testing would involve executing the program using a file with a set of numbers
where the correct results are either known ahead of time or can be calculated by hand in order to verify
that the results are accurate.

 13.6 Arrays of Strings

An array may also contain characters or strings. The declaration and access of array elements is the
same. However, the string size must be included in the declaration and cannot be easily changed once
defined.

106

Chapter 13 ◄ Single Dimension Arrays

For example, to declare an array to hold 100 titles where each title is a maximum of 40 characters,

character(40), dimension(100) :: titles

Setting an element is the same. For example, to set the first element of the array to a simple message,

titles(1) = "Programming is fun!"

The message must contain 40 or less characters.

Character arrays may be statically or dynamically declared as noted in the previous sections.

 13.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 13.7.1 Quiz Questions

Below are some quiz questions.

1) Explain why an array is considered a direct access structure.

2) Can arrays hold integer values (yes/no)?

3) Can arrays hold real values (yes/no)?

4) Write the declarations for the following:
a) An integer constant, SIZE1, set to 100.
b) An array, rvalues, with 10 real elements.
c) An array, inums, with SIZE1 integer arguments.
d) An array, counts, with 10 real elements whose subscript values range from 0 to 9.

5) Given the declarations and the following code:

integer, dimension(4) :: arr
integer :: k

arr(1) = 10
arr(2) = 15
arr(3) = 20
arr(4) = 25
k = 3

a) What does arr(1) equal?
b) What does arr(1) + arr(2) equal?
c) What does arr(1+2) equal?
d) What does arr(k) equal?

107

Chapter 13 ► Single Dimension Arrays

6) When can an array be allocated (two options)?

7) Given the following statements:

integer, dimension(5) :: nums
integer :: i=1

nums = 0

do
if (i == 5) exit
if (mod(i,2) == 0) then

nums(i) = 99
else

nums(i) = i
end if
i = i + 1

end do

a) What values are in array after execution
b) What is the (nums(i), i=1,5) referred to as?
c) What does write (*,'(1x,i2)') (nums(i), i=1,5) display? Note: use an

underscore (“_”) to show the spaces.

 13.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the standard deviation program, compile, and execute the program. Test the program on
a series of different input values.

2) Write a Fortran program to cube a series of integer numbers from a file and cube each number.
The program should also calculate the real average of the original numbers and the real average
of the cubed numbers. Test the program on a series of different input values.

3) Write the program to generate a series of real values between 1.0 and 100.0 and store the
numbers in an array. Then, the program should compute the norm of a vector (single dimension
array). The formula for norm is as follows:

∣norm∣ = √ a1
2
+ a2

2
+ a3

2
+ ... + an

2

Refer to Appendix C for more information regarding generating random numbers. Test the
program on a series of different input values.

108

Chapter 13 ◄ Single Dimension Arrays

4) Write a Fortran program to read a series of numbers from a file, store the numbers in an array,
and then sort the numbers using the following selection sort algorithm:

for i = len downto 1
big = arr(1)
index = 1
for j = 1 to i

if arr(j) > big
big = arr(j)
index = j

end_if
end_for
arr(index) = arr(i)
arr(i) = big

end_for

You will need to convert the above pseudo-code algorithm into Fortran code. Test the program
on a series of different input values.

109

Chapter 13 ► Single Dimension Arrays

110

 14 Multidimensional Arrays
A more advanced array is a multidimensional array. A multidimensional array can be thought of as
multiple columns in a spreadsheet. The column name, like A, B, C, etc., are the array columns and the
number is like the row.

For example, a two-dimensional array might look like:

index 1 2

Array Name 1 <value> <value>

2 <value> <value>

3

.

<value> <value>

n <value> <value>

The specific syntax requires an index or subscript to specify which element of the array to access. The
indexing for a two dimension array is:

index 1 2

Array Name 1 arr(1,1) arr(1,2)

2 arr(2,1) arr(2,2)

3 arr(3,1) arr(3,2)

.

.

n arr(n,1) arr(n,2)

By default, the first element is at index=1, the next at index=2, and so forth. This default (where the
first number is at index 1) can be changed if needed.

 14.1 Array Declaration

Multidimensional array declaration is very similar to single-dimension array declaration. Arrays must be
declared before use. The type of the array is defined followed by the size or dimension, which in this case
requires a size for each dimension. As before, there are two ways to declare an array: static and dynamic.

111

Chapter 14 ► Multidimensional Arrays

 14.1.1 Static Declaration

A static declaration means that the size or dimension of the array must be defined initially (before the
program is compiled). The size definition cannot be altered. The general form of an array declaration is,

type, dimension(extent,extent) :: name1, name2, ... , nameN

where type is the data type (integer, real, etc.) of the array. The dimension specifies the size, and name1,
name2, ... , nameN are names of one or more arrays being declared.

For example, to declare a two-dimensional array 100 by 100,

integer, dimension(100,100) :: nums1

will create an array, nums1, with space for a total of 10,000 integer values.

In this example the extent for each dimension is 100, which means that each of the two dimension's
indexes will range form 1 to 100. Each or both extents can be changed by specifying the extents as:

(smallerinteger:largerinteger, smallerinteger:largerinteger)

When only one number is specified, the smaller-integer is assumed to be 1. When both numbers are
specified, smaller and larger index, the dimension of the array will range between the smaller-integer
and the larger-integer. For example, a declaration of:

integer, dimension(0:9,0:9) :: ranges

will create an array, ranges, with both indexes between 0 and 9 (inclusive). Using index values not
within the specified range will result in an error.

 14.1.2 Dynamic Declaration

The same as single-dimension, a dynamic declaration means that the dimension of the array can be set when
the program is executed. Once set, the dimensions cannot be altered. When using a dynamic declaration,
the array type and name must be defined, which specifies only the name and type of the array, but does not
reserve any space for the array. Then, during program execution, the array can be allocated which will
create the space for the array. Only after the array has been allocated can it be used.

For example, to declare an array,

integer, dimension(:,:), allocatable :: nums2

reserving the name nums2, but not reserving any space for values.

 14.1.3 Dynamic Array Allocation

To allocate the space for the array, the allocate statement must be used. Before an array can be allocated, it
must be declared as allocatable.

The general form of the allocate statement is:

allocate(<array name>, <dimension>, stat=<status variable>)

The status variable must be an integer variable and will be used by the system to place a status code

112

Chapter 14 ◄ Multidimensional Arrays

indicating the status (success or failure) of the operation. As before, if the status variable is set to 0, the
allocation was successful. If the status variable is set to >0, an error occurred and the allocation was
not successful.

For example, given the declarations,

integer, dimension(:,:), allocatable :: nums2
integer :: allstat

the following allocate statement allocates space for 10,000 numbers in array nums2,

allocate(nums2(100,100), stat=allstat)

The size, 100 by 100 in this example, can be a parameter or variable, but it must be an integer. The
variable allstat will be set to 0 if the allocation is successful and >0 if the allocation failed.

 14.2 Accessing Array Elements

To access elements in an array, the array name and the an index must be specified. The index must include
an integer or integer expression for each dimension enclosed in parentheses. The general format is,

arrayname(<integer expression>, <integer expression>)

For example, given the declaration,

real, dimension(10,5) :: table1

would declare an array, table1, with a total of 50 elements. To place a value 121.3 in the first row and first
column,

table1(1,1) = 121.3

And to place 98.125 in the tenth row and fifth column,

table1(10,5) = 98.125

The index in these examples is a literal. However, the index can be an integer variable or integer
expression. For example, given the following declarations,

real, dimension(10,10) :: tmptable
integer :: i=2, j=3

would declare an array, tmptable, with one hundred elements.

To place a value 98.6 in the second row, fourth column,

tmptable(i,j+1) = 98.6

To access the same element, subtract 3.0 and place the result back into the same location,

tmptable(i,j+1) = tmptable(i,j+1) – 3.0

113

Chapter 14 ► Multidimensional Arrays

To set all elements of the tmptable array to 0.0, a nest loop could be used as follows:

do i = 1, 10
do j = 1, 10

tmptable(i,j) = 0.0
end do

end do

In addition, the entire array can be set to 0 in the following statement,

tmptable = 0.0

Array elements can be accessed as many times as needed.

 14.3 Example

In this example we will write a Fortran program that will request a count, generate count (x,y) random
points, and perform a Monte Carlo π estimation based on those points. All x and y values are between
0 and 1. The main routine will get the count and then use a subroutine to generate the random (x,y)
points and a function, to perform the Monte Carlo π estimation. For this example, the count should be
between 100 and 1,000,000.

 14.3.1 Understand the Problem

Based on the problem definition, we will use a main routine that will get and check the count value. If
the count is not between 100 and 1,000,000, the routine will re-prompt until the correct input is
provided. Once a valid count value is obtained,
then the main will allocate the array and call the
two subroutines. The first subroutine will
generate the random (x,y) points and store them
in an array. The second subroutine will perform
the Monte Carlo π estimation.

Monte Carlo methods are a class of
computational algorithms that rely on repeated
random sampling to compute their results.
Suppose a square is centered on the origin of a
Cartesian plane, and the square has sides of
length 2. If we inscribe a circle in the square, it
will have a diameter of length 2 and a radius of
length 1. If we plot points within the upper right quadrant, the ratio between the points that land within
the inscribed circle and the total points will be an estimation of π.

 est π = 4 (samples inside circle
total samples)

As more samples are taken, the estimated value of π should approach the actual value of π. The
Pythagorean theorem can be used to determine the distance of the point from the origin. If this distance

114

Chapter 14 ◄ Multidimensional Arrays

is less than the radius of the circle, then the point must be in the circle. Thus, if the square root of
(x2+y2) < 1.0, the random point is within the circle.

Finally, the figure we are discussing, a square centered on the origin with an inscribed circle is
symmetric with respect to the quadrants of its Cartesian plane. This works well with the default
random number generations of values between 0 and 1.

 14.3.2 Create the Algorithm

The main routine will display an initial header, get and check the count value, and allocate the array.
The program will need to ensure that the array is correctly allocated before proceeding. Then the
program can generate the (x,y) points. Based on the problem definition, each point should be between
0.0 and 1.0, which is provided by default by the Fortran random number generator. Next, the program
can perform the Monte Carlo pi estimation. This will require the already populated (x,y) points array
and the count of points. Each point will be examined to determine the number of points that lie within
the inscribed circle. The Pythagorean theorem allows us to determine the distance of the point from the
origin (0.0,0.0). Thus, for each point, we will calculate the √ (x2

+ y2
) and if the distance is less than

the circle radius of 1.0, it will be counted as inside the circle.

Then, the estimated value of π can be calculated based on the formula:

est π = 4 (samples inside circle
total samples)

When completed, the program will display the final results. The basic algorithm is as follows:

! declare variables
! display initial header
! prompt for and obtain count value
! loop
! prompt for count value
! read count value
! if count is correct, exit loop
! display error message
! end loop
! allocate two dimension array
! generate points
! loop count times
! generate x and y values
! place (x,y) values in array at appropriate index
! end loop
! set count of samples inside circle = 0
! loop count times
! if [sqrt (x(i)**2 + y(i)**2) < 1.0]
! increment count of samples inside circle
! end loop
! display results

For convenience, the steps are written as program comments.

115

Chapter 14 ► Multidimensional Arrays

 14.3.3 Implement the Program

Based on the algorithm, the below program could be created.

program piestimation

! declare variables
implicit none
integer :: count, alstat, i, incount
real :: x, y, pi_est, pt
real, allocatable, dimension(:,:) :: points

! display initial header
write (*,'(/a/)') "Program Example – PI estimation."

! prompt for and obtain count value
do

! prompt for count value
write (*,'(a)', advance="no") &

"Enter Count (100 1,000,000): "

! read count value
read (*,*) count

! if count is correct, exit loop
if (count >= 100 .and. count <= 1000000) exit

! display error message
write (*,'(a,a,/a)') "Error, count must be ", &

"between 100 and 1,000,000.", &
"Please reenter."

 end do

! allocate two dimension array
allocate (points(count,2), stat=alstat)
if (alstat /= 0) then

write (*,'(a,a,/a)') "Error, unable to", &
" allocate memory.", "Program terminated."
stop

end if

! generate_points
call random_seed()

! loop count times
do i = 1, cnt

! generate x and y values
call random_number(x)

116

Chapter 14 ◄ Multidimensional Arrays

call random_number(y)

! place (x,y) values in array
pts(i,1) = x
pts(i,2) = y

end do

! perform monte carlo estimation
! set count of samples inside circle = 0
incount = 0

! loop count times
do i = 1, cnt

! if [sqrt (x(i)2 + y(i)2) < 1.0]
! increment count of samples inside circle

pt = pts(i,1)**2 + pts(i,2)**2
if (sqrt(pt) < 1.0) incount = incount + 1

end do

pi_est = 4.0 * real(incount) / real(cnt)

! display results
write (*,'(a, f8.2)') "Count of points: ", count
write (*,'(a, f8.2)') "Estimated PI value: ", pi_est

end program piestimation

The spacing and indentation are not required, but help to make the program more readable.

 14.3.4 Test/Debug the Program

For this problem, the testing would involve executing the program using a series of different count
values and ensure that the π estimate is reasonable and improves with higher count values.

117

Chapter 14 ► Multidimensional Arrays

 14.4 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 14.4.1 Quiz Questions

Below are some quiz questions.

1) Can a multidimensional array simultaneously hold both integer and real values (yes/no)?

2) Multiple choice: what is the order of the indexes?

a) (row, column)
b) (column, row)
c) (row, row)
d) (column, column)
e) user-selectable

Note, there is only one correct answer.

3) Given the following code:

real, dimension(5,3) :: mdarr
integer :: i, j

do i = 1, 5
do j = 1, 3

mdarr(i,j) = real(i+j)
end do

end do

a) How many values, total, can be stored in the mdarr array?
b) Show the contents of every cell in the mdarr.
c) What does mdarr(2,1) contain?
d) What does mdarr(1,3) contain?
e) What does mdarr(4,3) contain?

4) How can an unsuccessful multidimensional dynamic allocation be detected?

 14.4.2 Suggested Projects

Below are some suggested projects.

1) Type in the π estimation program compile, and execute the program. Test the program on a
series of different point count values. Demonstrate that larger point values provide a better
estimation.

118

Chapter 14 ◄ Multidimensional Arrays

2) Update the π estimation program to ensure that a valid count value is obtained within three
tries. If there are more than three errors, the program should display an error message and
terminate.

3) Update the π estimation program to display the estimated π value 10 times. In order to perform
this, the count value can be divided by 10 and the current estimated π value displayed.

4) Write a program to statically declare a 100x100 two-dimensional array of real values. The
program should populate the array with random numbers between 0 (inclusive) and 1
(exclusive). Refer to Appendix C for information regarding generating random numbers. The
program should scan the array to find and display the maximum value and the location of that
value (i.e., the row and column where the value was found).

5) Update the find maximum program (from the previous question) to declare the array
dynamically and allow the user to enter the row and column dimensions and ensure that each is
between 10 and 1000. Once entered, the program should allocate the array and find and display
the maximum and minimum values and their locations (row and column).

6) Write a Fortran program to construct an odd-order Magic Square12. The algorithm for
constructing a NxN odd ordered Magic Square is as follows:

● First, place a 1 in the middle of the top row.

● After placing an integer, k, move up one row and one column to the right to place the
next integer, k+1, unless the following occurs:

○ If a move takes you above the top row in the jth column, move to the bottom of the jth

column and place the integer there.

○ If a move takes you outside to the right of the square in the ith row, place the integer
in the ith row at the left side.

○ If a move takes you to an already filled square or if you move out of the square at
the upper right hand corner, place k+1 immediately below k.

Test the program and compare the results to the Wikipedia example.

12 For more information, refer to: http://en.wikipedia.org/wiki/Magic_square

119

Chapter 14 ► Multidimensional Arrays

120

 15 Subprograms
Until now, all of the programs have essentially been single, fairly small programs. However, as we
scale up into larger programs, this methodology will become more difficult. When developing larger
programs, it becomes necessary to break larger programs up into multiple, smaller more manageable
pieces. Then, during program development, it is possible to focus on each subsection or piece
individually and then combine the results into a final complete program. And, for very large projects,
multiple people may work on different parts of the program simultaneously.

Some of the key advantages of developing a program using functions and/or subroutines include:

● Structured development of programs

● Reuse of subprograms

● Isolation of subprograms

Fortran subprograms are the mechanism to break a large program into multiple smaller parts. This
allows for a more comprehensive program design.

 15.1 Subprogram Types

There are two types of Fortran subprograms: functions, and subroutines, each of which is explained in
the following sections.

 15.2 Program Layout

The functions and subroutines can be defined as either internal or external. Internal functions and
subroutines are defined within the program statement (i.e., before the “end program <name>”
statement). The basic layout for both internal and external subprograms are as follows:

program <name>

<declarations>
<program statements>

contains

<internal functions or subroutines>

end program <name>

<external functions or subroutines>

Where a combination of both or either internal or external routines is allowed.

121

Chapter 15 ► Subprograms

 15.2.1 Internal Routines

Internal routines require the keyword “contains” to separate them from the program code. Primarily,
internal routines will be used in this text for simplicity. There is no limit to the number of internal
routines. However, if too many routines are included the file will become large and such large files can
be difficult to work with.

 15.2.2 External Routines

External functions are defined outside the program statement (i.e., after the “end program <name>”
statement) or in another file. For larger programs, external routines would be used extensively.
However, additional set-up statements, including an external declaration and an interface block, are
required. The definition and use of external routines are not addressed in this chapter.

 15.3 Arguments

When writing and using Fortran subprograms, it is typically necessary to provide data to a subprogram
and/or to obtain results back from the functions or subroutines. This information, in the form of
variables, is referred to as an argument or arguments. The argument or arguments in the calling routine
are referred to as actual arguments, and the argument or arguments in the function or subroutine are
referred to as formal arguments. The formal arguments take on the values that are passed from the
calling routine.

The only way to transfer values in to or out of a subroutine is through the arguments. A function
typically passes values in through the arguments with a single return value (via the function name). All
other variables are independent and isolated.

 15.3.1 Argument Intent

Subprograms often return values by altering or updating some of the arguments. When passing a
variable, the information (value or values) can be passed into the function or subroutine. This is
referred to as “intent(in)”. If the variable is to be set by the function or subroutine, that is referred to as
“intent(out)”. If the variable contains a value or multiple values (i.e., an array) that are to be passed
into the function or subroutine and altered in some way by the function or subroutine and returned back
to the calling routine, that is referred to as “intent(inout)”.

 15.4 Variable Scope

The variable scope refers to where a given variable can be accessed. Scope rules tell us if an entity
(i.e., variable, parameter, and/or function) is visible or accessible at certain places. Places where an
entity can be accessed or visible is referred as the scope of that entity. The variables defined in a
subprogram are generally not visible to the calling routine. Thus, a variable x in the calling routine is
different than a variable x in the subprogram.

 15.5 Using Functions and Subroutines

Before a function or subroutine can be used, it must be defined or written. Once defined, the function
or subroutine can be used or called. A function or subroutine is called by using its name as we have

122

Chapter 15 ◄ Subprograms

done with the intrinsic functions. When a program uses a subroutine, it is called with a call statement.
When a program uses a function, it is used by name and returns a result which must be assigned
somewhere appropriate (e.g., like a variable).

 15.5.1 Argument Passing

When using functions or subroutines, information (values, variables, etc.) is typically passed to or from
the routines. Argument association is a way of passing values from actual arguments to formal
arguments. If an actual argument is an expression, it is evaluated and passed to the corresponding
formal argument. If an actual argument is a variable or constant, its value is passed to the
corresponding formal argument. There must be a one-to-one correspondence between the actual
argument (calling routine) and the formal argument (function/subroutine).

The arguments in the call are matched up to the arguments in the function/subroutine by position. Each
of the arguments is matched by its corresponding position. The names of the variables do not need to
match, however, the data types must match. For example, given the following subroutine call and
subroutine,

Calling Routine

...
call example (x, y, z)
...

Subroutine

...
subroutine example (a, b, c)
...

each variable is matched by its corresponding position.

Other variables in either the calling routine (top) or the subroutine (bottom) are isolated from each
other. As such, the same variable name can be re-used in both the calling routine and the subroutine
(and refer to different values).

 15.6 Functions

A function is a special type of Fortran subprogram that is expected to return a single result or answer.
A function will typically accept some kind of input information and based on that information, return a
result. The two types of Fortran functions are described in the following sections.

123

Chapter 15 ► Subprograms

 15.6.1 Intrinsic Functions

As described previously, an intrinsic function is a built-in function that is already available. Some of
the intrinsic functions already described include sin(), cos(), tan(), real(), int(), and nint(). A more
comprehensive list is contained in Appendix D.

 15.6.2 User-Defined Functions

A user-defined function is a function that a written by the user for specific or specialized requirements.
The general form of a user-defined function is as follows:

<type> function <name> (<arguments>)
<declarations>

<body of function>

<name> = expression
return

end function <name>

The <type> is one of the Fortran data types: real, integer, logical, character, or complex. It is possible
to place the type declaration on a separate line from the function statement.

The information, in the form of arguments, is passed from the calling routine to the function. Each of
the passed arguments must be declared and the declaration must include the type and the intent. The
arguments in the calling routine and the function must match and are matched up by position.

An example function to convert a Fahrenheit temperature to Celsius temperature would be as follows:

real function fahr_to_celsius(ftemp)
real, intent(in) :: ftemp

 fahr_to_celsius = (ftemp – 32.0) / 1.8

 return
end function fahr_to_celsius

Which, given a Fahrenheit temperature, will return the Celsius temperature. The single input argument,
ftemp, is declared to be a real value and “intent(in)”, which means that the value is expected to be
coming into the function and cannot be changed. The final value is returned to the calling routine by
assigning a value to the function name, fahr_to_celsius, in this example.

 15.6.2.1 Side Effects

A side-effect is when a function changes one or more of its input arguments. Since the arguments can
be declared as “intent(out)” or “intent(inout)”, the function could change the arguments. In general,
this is considered poor practice and should be avoided. None of the examples in this text will include
or utilize side-effects.

124

Chapter 15 ◄ Subprograms

 15.7 Subroutines

A subroutine is a Fortran subprogram that can accept some kind of input information and based on that
information, return a result or series of results.

The general form of a subroutine is a follows:

subroutine <name> (<arguments>)
<declarations>

<body of subroutine>

return
end subroutine <name>

The information, in the form of arguments, is passed from the calling routine to the subroutine. Each
of the passed arguments must be declared and the declaration must include the type and the intent. The
arguments in the calling routine and the subroutine must match and are matched up by position.

For example, given the following simple program to find the sum and average of three numbers.

program subExample

implicit none
real :: x1=4.0, y1=5.0, z1=6.0, sum1, ave1
real :: x2=4.0, y2=5.0, z2=6.0, sum2, ave2

 call sumAve(x1, y1, z1, sum1, ave1)
 write (*,'(a,f5.1,3x,a,f5.1)') "Sum=", sum1, &

"Average=", ave1
 call sumAve(x2, y2, z2, sum2, ave2)
 write (*,'(a,f5.1,3x,a,f5.1)') "Sum=", sum2, &

"Average=", ave2
contains

subroutine sumAve (a, b, c, sm, av)
real, intent(in) :: a, b, c
real, intent(out) :: sm, av

sm = a + b + c
av = sm / 3.0

return
end subroutine sumAve

end program subExample

The arguments in the first call (x1, y1, z1, sum1, and ave1) are matched up to the arguments in the
subroutine (a, b, c, sm, and av) by position. That is, the x1 from the call is matched with the a in the
subroutine. The arguments in the second call (x2, y2, z2, sum2, and ave2) are again matched up to the

125

Chapter 15 ► Subprograms

arguments in the subroutine (a, b, c, sm, and av) by position. While the names of the variables do not
need to match, the data types must match. Variables declared in a function or subroutine are not the
same as variables in the calling routine. This is true, even if they are the same name!

 15.8 Example

In this example we will write a Fortran program to simulate the dice game of Twenty-Six13, which is a
single player betting game with 10 dice. The main program will determine how many games to play,
track the count of games won and lost, and display some win/loss statistics. A subroutine will be used
to play the Twenty-Six game. The subroutine will be called as many times as requested.

The subroutine, twenty_six(), will play the dice game Twenty-Six. To play the game, the player rolls
the dice (1 to 6) and this initial roll is used as the “point” number. Then the player throws the ten dice
13 times. The score is the number of times that the point number is thrown. A random number
between 1 and 6 will be used for each dice roll.

The routine will determine the payout based on the point count using the following table:

Point Count Payout

10 or less 10

13 5

26 4

27 5

28 6

29 8

30 10

Other 0

The subroutine should display the dice (all 10 dice for each of 13 rolls), point count, game result, and
payout. For example, if the point was 6, the subroutine might display the following:

Point: 6
 Roll: 1 Dice: 4 6 5 3 3 1 1 3 3 2
 Roll: 2 Dice: 1 6 3 3 4 1 4 4 2 6
 Roll: 3 Dice: 3 2 6 4 5 3 2 1 5 4
 Roll: 4 Dice: 5 6 4 1 4 6 6 2 4 4
 Roll: 5 Dice: 4 6 6 4 5 3 6 1 5 5
 Roll: 6 Dice: 3 1 4 5 6 5 3 3 3 4
 Roll: 7 Dice: 6 6 5 6 1 5 5 6 5 5
 Roll: 8 Dice: 4 1 3 4 1 4 4 6 2 5
 Roll: 9 Dice: 4 4 2 1 1 4 3 1 5 4
 Roll: 10 Dice: 5 6 1 2 4 1 1 2 1 1
 Roll: 11 Dice: 2 3 2 4 1 3 3 6 5 1
 Roll: 12 Dice: 1 1 6 5 4 5 1 6 6 5
 Roll: 13 Dice: 6 4 4 5 3 3 5 3 3 5

13 For more information, see: http://www.dice-play.com/Games/TwentySix.htm

126

Chapter 15 ◄ Subprograms

Point Count: 22
Game Result: LOSS Payout = 0

For this example, the main will track the games won and lost.

 15.8.1 Understand the Problem

The program will display an initial header and get the number of games to play. Specifically, we will
need to prompt for the count of games and verify that the count is between 2 and 1,000,000 (arbitrarily
chosen). Then, the program will call the twenty_six() subroutine count times. After each game, the
main will update the count of games won. The main will also track the payout and bank value status,
which is initialized to 100 (chosen arbitrarily) and updated after each game is played.

An example main is provided as follows:

program diceGame

!
! Fortran program to simulate a dice game of TwentySix
! The main program:
! displays appropriate headers
! obtains and checks number of games to play
! loops to play 'count' number of games times

implicit none
integer, parameter :: initial_bank=100
integer :: num_games, games_won=0, games_lost=0
integer :: i, payout, bank
integer, dimension(13,10) :: dice
real :: win_pct

write (*, '(/a/a/)') &
"", &
"Dice Game ""TwentySix"" Simulator."

do
write (*, '(2x, a)', advance = "no") &

"Enter number games to simulate: "
read (*,*) num_games
if (num_games >= 1 .and. num_games <= 1000000) exit
write (*, '(2x, a)') "Error, number of ", &

"games must be between 1 and 1000000."
write (*, '(2x, a)') "Please reenter."

end do

bank = initial_bank
call random_seed()

do i = 1, num_games
bank = bank 1

127

Chapter 15 ► Subprograms

call twentySix (payout)
if (payout > 0) then

games_won = games_won + 1
else

games_lost = games_lost + 1
end if
bank = bank + payout

end do

win_pct = (real(games_won) / real(num_games)) * 100.00

write (*,'(/a,/a/,3(2x,a,i9/),2(2x,a,i8/),2x,a,f4.1,a)') &
"" &
"Games Statistics:", &
"Game Count: ", num_games, &
"Games Won: ", games_won, &
"Games Lost: ", games_lost, &
"Initial Bank: ", initial_bank, &
"Final Bank: ", bank, &
"Win Percentage: ", win_pct, "%"

contains

! ***
! subroutine(s) goes here...
! ***

end program diceGame

Refer to Appendix C for additional information regarding the random number generation and
initialization of the built-in random number generator.

 15.8.2 Create the Algorithm

Since the main is provided, the algorithm will focus on the twenty-six game. Since the built-in random
number generator provides random numbers between 0.0 and 1.0, they will need to be scaled and
converted to an integer between 1 and 6 (for a dice). The initial point value must first be established
followed by a loop to throw the ten dice 13 times in accordance with the game rules. The results will
be stored in a two-dimensional array. While not strictly required, it does provide an additional example
of how to use a two-dimensional array. Finally, the payout will be determined based on the game rules.

! Randomly select a number from 1 to 6 as the "point" number
! Throw ten dice 13 times
! results go into dice(13,10) array
! Score is the number of times that the point number
! is thrown
! determine payout

128

Chapter 15 ◄ Subprograms

For convenience, the steps are written as program comments.

 15.8.3 Implement the Program

Based on the algorithm, the below program could be created.

! ***
! Subroutine to simulate twentysix game.
! Randomly select a number from 1 to 6 as the “point” number
! Throw ten dice 13 times
! results go into dice(13,10) array
! Score is the number of times that the point number is
thrown

subroutine twentySix (payout)
implicit none
integer, dimension(13,10) :: dice
integer, intent(out) :: payout
integer :: point, pnt_cnt
real :: x
integer :: i, j

! determine point
call random_number(x)
point = int(x*6.0) + 1

! roll dice
pnt_cnt = 0

do i = 1, 13
do j = 1, 10

call random_number(x)
dice(i,j) = int(x*6.0) + 1
if (dice(i,j) == point) pnt_cnt = pnt_cnt + 1

end do
end do

! determine payout
select case (pnt_cnt)

case (6, 10)
payout = 10

case (13,27)
payout = 5

case (26)
payout = 4

case (28)
payout = 6

case (29)

129

Chapter 15 ► Subprograms

payout = 8
case (30)

payout = 10
case default

payout = 0
end select

write (*,'(/,5x,a,/,5x,a,i2,/,5x,a,i2)') &
"", &
"Point: ", point

do i = 1, 13
write (*,'(8x, a, i2, 2x, a, 10(2x, i1),/)', &

advance="no") "Roll: ", i, "Dice: ", &
 (dice(i,j), j=1,10)

end do

write (*,'(/,5x,a,i2)') "Point Count: ", pnt_cnt

if (payout > 0) then
write (*,'(5x,a,i2)') &

"Game Result: WIN Payout = ", payout
else

write (*,'(5x,a,i2)') &
"Game Result: LOSS Payout = ", payout

end if

write (*,'(5x,a,i6)') "Bank:", bank

return
end subroutine twentySix

The spacing and indentation are not required, but help to make the program more readable.

 15.8.4 Test/Debug the Program

For this problem, the testing would involve executing the program using a file with a set of numbers
where the correct results are either known ahead of time or can be calculated by hand in order to verify
that the results are accurate.

 15.9 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 15.9.1 Quiz Questions

Below are some quiz questions.

1) What are the two types of Fortran subprograms?

130

Chapter 15 ◄ Subprograms

2) How many values does a user-defined function typically return?

3) In the function call, ans = power(x, y), what are x and y are called?

4) In the function heading, integer function power(a, b), what are a and b are called?

5) In the function, integer function power(a, b), what is the type of the value returned?

6) Is it possible to pass integer arguments to a real function (yes/no)?

7) The subprogram section (where functions and subprograms are defined) is marked by what
keyword?

8) What is the output of the following function:

integer function power(a, b)
integer, intent(in) :: a, b

 power = a ** b
 return
end function power

a) with the input of a = 2 and b = 3?
b) with the input of a = 3 and b = 2?

9) Given the following program?

program quiz
implicit none
real :: temp=80.0, temp1=50.0, temp2

 write (*, '(f5.2, 2x, f5.2)') temp, temp1
 temp2 = fahrToCelsius(temp1)
 write (*, '(f5.2, 2x, f5.2)') temp, temp2

contains

real function fahrToCelsius(temp)
real, intent(in) :: temp

 fahrToCelsius = (temp – 32.0) / 1.8
 return
end function fahrToCelsius

end program quiz

131

Chapter 15 ► Subprograms

a) What is the name of the function?
b) Is the above program correct (yes/no)?
c) Does the variable temp in the main and the variable temp in the function refer to the same

value?
d) What is the output?

10) What is meant by the term variable scope?

11) What is the correct intent for the following situations:
a) A variable passed to a function that will not be changed in the function.
b) A variable that will be set in the subroutine and returned. No value is passed in.
c) A variable that will be passed into a subroutine, updated, and returned back to the calling

routine.

12) What is a meant by the term side-effect?

 15.9.2 Suggested Projects

Below are some suggested projects.

1) Type in the dice game program example, compile, and execute the program. Test the program
by playing it for a series of rounds. Ensure the scoring is correct.

2) Write a main program and an integer Fortran function, gSeries(), to compute the following
geometric series:

g = ∑
n=0

n−1

xn
= 1+ x+ x2

+ x3
+ ⋯ + x(n−1)

The arguments for the call, in order, are as follows: n (integer value). The function should
return an integer result (of the formula based on the n value). The main should call the function
with several different values.

3) Write a main program and a real function, harmonicMean(), to compute the harmonic mean of
a series of real numbers. The real numbers are pass to the function in an array along with the
count.

harmonic mean =
N

(1
x1

+
1
x2

+ ...+
1
xN)

The arguments for the call, in order, are as follows; array of numbers (with count real values),
count (integer). The function should return a real result (of the formula). The main should call
the function with several different values.

132

Chapter 15 ◄ Subprograms

4) Write a main program and a subroutine, CircleStats(), that, given an array containing a series of
circle diameter's (real values), will compute the area of each circle in a series of circles and
store them into a different array (real values). The subroutine should also compute the real
average of the circle areas. The arguments for the call, in order, are as follows; circle diameter's
array (count real values), circle areas array (count real values), count (integer), areas average
(real). The main program should declare the array and initialize the array with a series of values
for circle areas. The program results should be verified with a calculator.

5) Write a main program and a subroutine, ReadCoord(), to read an (x, y, z) coordinate from the
user. The subroutine must prompt for and read (x, y, z) and ensure that the x, y, and z values are
between 0 and 100 (inclusive). The values may be prompted for and read together, but the
prompt should leave the cursor on the same line. The subroutine should re-prompt for all three
if the input data is not correct. If the user provides valid data, the (x, y, z) values should be
returned with a logical for valid data set to true. If the user does not provide valid data entry
after three tries, the subroutine should display an error message and a set the logical for valid
data to false. The arguments for the call, in order, are as follows; x value (integer), y value
(integer), z value (integer), and valid data flag (logical value). The main program should call
the subroutine three times and display the results for each call.

6) Write a main program and a subroutine, Stats(), that, given an array containing a series of
numbers (real values), will find and display the following real values; minimum, median,
maximum, sum, and average. The display must use a formatted write(). The real values will
not exceed 100.0 and should display three digits decimal values (i.e., nnn.xxx). The arguments
for the call, in order, are as follows; array of numbers (count real values), count (integer). The
main program should populate the array with random numbers and call the subroutine.

133

Chapter 15 ► Subprograms

134

 16 Derived Data Types
A derived data type is a user-defined combination of the intrinsic data types. The derived data types
are a convenient way to combine or group variables about a particular item.

For example, a 'student' might include a name, identification number, final score, and grade. Each of
these pieces of information can be represented with individual variables (as outlined in previous
section) as follows:

character(50) :: name
integer :: id
real :: score
character(2) :: grade

However, for multiple students, multiple sets of variables would be required. This can become
cumbersome and confusing.

By using a derived data type, these separate pieces of information can be more easily grouped together.
The details on defining, declaring and using derived data types are provided in the following sections.

 16.1 Definition

Before a derived data type can be used, it must be defined. The definition will establish which pieces
of information will be grouped together. Each piece of information included in the definition is
referred to as a component.

type type_name
<component definitions>

end type type_name

For example, to declare the student type described previously, the following declaration would be
appropriate:

type student
character(50) :: name
integer :: id
real :: score
character(2) :: grade

end type student

The indentation is not required, but does make the definition easier to read. The fields (name, id, score,
grade) are called components. These components together make up the information for a 'student'.

The type definition is required only once at the beginning of the program. Once defined, the type
definition cannot be changed. More specifically, additional components cannot be added unless the
definition is updated and program is recompiled.

135

Chapter 16 ► Derived Data Types

This definition will establish a template as follows:

student name

 id

 score

 grade

Once defined, the template can be used to declare variables. Each variable declared with this definition
will be created based on the definition which includes these four components.

 16.2 Declaration

Once a derived data type is defined, variables using that definition can be declared. The general format
for a declaration is as follows:

type (<type_name>) :: <variable_name(s)>

For example, to declare two students, the following declaration could be used:

type (student) :: student1, student2

This declaration will declare two variables, student1 and student2, each with the set of components
defined in the type definition. The definition can be thought of as the cookie cutter and the declaration
is the cookie. Only after a variable has been declared, can values be set for that variable.

 16.3 Accessing Components

Once some variables using the derived data type have been declared, the individual components can be
accessed. First the variable name is specified, followed by a “%” (percent sign), and then the
component name. The general format is:

<variable_name>%<component_name>

For example, to set all components for the student student1, the following

student1%name = "Joseph"
student1%id = 1234
student1%score = 99.99
student1%grade = "A"

Each component for student1 is set individually. Not every component must be set. Of course, as with
other variables, any component that has not been set cannot be used.

136

Chapter 16 ◄ Derived Data Types

This previous declaration and these assignments will establish a variable as follows:

student name Joseph

 id 1234

 score 99.99

 grade A

It is possible to assign all components to another variable of the same derived data type. For example,
to set student2 to be the same as student1, an assignment is used as follows:

student2 = student1

This will copy all components from the variable student1 into the variable student2 (since both
student1 and student2 are of the same derived data type).

 16.4 Example One

In this example, we will write a simple program to read two times from the user, time one and time
two, and calculate the sum of the two times. For this example, the time will consist of hour, minutes,
seconds in 24-hour format. For this exercise, the hours may exceed 23 when the times are summed.
The program should declare the appropriate variables using a derived data type, use a subroutine to
read a time (which should be called twice), and another subroutine to calculate the sum of the times.
The subroutine to read the times must perform appropriate error checking. The main should display
both the times and the final time sum.

 16.4.1 Understand the Problem

The main is expected to define the appropriate derived data type for time, declare some variables of
that type and call the subroutines. The first subroutine will read a time from the user which will consist
of hour, minutes, and seconds in 24-hour format. This subroutine will be called twice. The second
subroutine will add the times together and provide a result.

The first subroutine to read a time from the user is expected to perform error checking on the data
entered by the user. Specifically, this requires that hours range from 0 to 23, minutes range from 0 to
59, and seconds range from 0 to 59. Values outside these ranges, 60 seconds for example, are not valid.
For this simple example, we will re-prompt for incorrect data entry (until correct data is provided).

The second subroutine will add the two times and must ensure that the correct ranges for seconds and
minutes are maintained. When adding the two times, it is possible to add the seconds, minutes, and
hours. However, if the sum of the two seconds values exceeds 60, the seconds must be adjusted and
the minutes must be updated accordingly (add one extra minute). This applies to the minutes as well.
However, when added in this exercise, the final time sum hours may exceed 23 hours.

For example, given time one as 14 hours, 47 minutes and 22 seconds (i.e., 14:47:22) and time two as 18
hours, 22 minutes, and 50 seconds, (i.e., 18:22:50), the total time would be 33 hours, 10 minutes and 12
seconds (i.e., 33:10:12).

137

Chapter 16 ► Derived Data Types

 16.4.2 Create the Algorithm

For this example there are three parts; the main, the read time subroutine, and the time summation
subroutine. The basic steps for the main include:

! define derived data type for time
! must include hours, minutes, seconds→
! declare variables, including time1, time2, and timesum→
! display initial header
! call subroutine to read time1
! call subroutine to read time2
! call subroutine to add times
! display results

The basic steps for the read time subroutine include:

! subroutine header and appropriate declarations
! loop
! prompt for time
! read time (hours, minutes, seconds)
! check time entered
! if [hours(023), minutes(059), seconds (059)] exit→
! display error message
! end loop

The basic steps for the time summation subroutine include:

! subroutine header and appropriate declarations
! add the seconds
! add the minutes
! add the hours
! if seconds > 59, then
! subtract 60 from seconds
! add 1 to minutes
! if minutes > 59, then
! subtract 60 from minutes
! add 1 to hours

For convenience, the steps are written as program comments.

 16.4.3 Implement the Program

Based on the algorithm, the below program could be created.

program timeSummation

! define derived data type for time (hours, minutes, seconds)
implicit none

138

Chapter 16 ◄ Derived Data Types

type time
integer :: hours, minutes, seconds

end type time

! declare variables
! includes time1, time2, and timesum→
type(time) :: time1, time2, timesum

! display initial header
write (*,'(/,a,/)') "Time Summation Example Program."

! call subroutine to read each time
call readtime(time1)
call readtime(time2)

! call subroutine to add times
call addtimes(time1, time2, timesum)

! display results
write (*,'(/,a,i2.2,a1,i2.2,a1,i2.2)') "Time One: ", &

time1%hours, ":", time1%minutes, ":", time1%seconds
write (*,'(a,i2.2,a1,i2.2,a1,i2.2)') "Time Two: ", &

time2%hours, ":", time2%minutes, ":", time2%seconds
write (*,'(a,i2.2,a1,i2.2,a1,i2.2,/)') "Time Sum: ", &

timesum%hours, ":", timesum%minutes, ":", &
timesum%seconds

contains

! ***
! Subroutine to prompt for, read, and check
! a time (hours:minutes:seconds) in 24hour format.

subroutine readtime (timeval)
type(time), intent(out) :: timeval

do
! prompt for time

write (*,'(a)',advance="no") &
"Enter time (hh mm ss): "

! read time (hours, minutes, seconds)
read (*,*) timeval%hours, timeval%minutes, &

timeval%seconds

! check time entered
if (timeval%hours >= 0 .and. &

timeval%hours <= 23.and. &
timeval%minutes >= 0 .and. &

139

Chapter 16 ► Derived Data Types

timeval%minutes <= 59 .and. &
timeval%seconds >= 0 .and. &

timeval%seconds <= 59) exit

! display error message
write (*,'(a,/,a)') &

"Error, invalid time entered.", &
"Please reenter time."

end do

return
end subroutine readtime

! ***
! Subroutine to add two times.
! Ensures seconds and minutes are within range (059)
! Hours may exceed 23

! subroutine header and appropriate declarations
subroutine addtimes (tm1, tm2, tmsum)
type(time), intent(in) :: tm1, tm2
type(time), intent(out) :: tmsum

! add the seconds, minutes, hours
tmsum%seconds = tm1%seconds + tm2%seconds
tmsum%minutes = tm1%minutes + tm2%minutes
tmsum%hours = tm1%hours + tm2%hours

! if seconds > 59, subtract 60 from seconds and add 1 to minutes
if (tmsum%seconds > 59) then

tmsum%seconds = tmsum%seconds 60
tmsum%minutes = tmsum%minutes + 1

end if

! if minutes > 59, subtract 60 from minutes and add 1 to hours
if (tmsum%minutes > 59) then

tmsum%minutes = tmsum%minutes 60
tmsum%hours = tmsum%hours + 1

end if

return
end subroutine addtimes

end program timeSummation

If the program does not work at first, the comments can aid in determining the problem.

140

Chapter 16 ◄ Derived Data Types

 16.4.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of various time
values to ensure that the results are correct. If the program does not work initially, the functionality of
each subroutine should be checked. The times read from the user can be displayed to the screen to
ensure they are correct. Once the times are correct, the add times subroutine can be checked. Each of
the time sums can be displayed to help determine where the error might be.

 16.5 Arrays of Derived Data

In addition to declaring single variables based on the derived data type definition, it is possible to
declare an array based on the derived data type definition. For example, to declare an array named
class to hold 30 elements of type student, the following declaration can be used:

type(student), dimension(30) :: class

Each element of the array class will be of the type student and include each of the defined components
(name, id, score, grade in this example). For an array of type(student), the layout would be as follows:

class(1) name

 id

 score

 grade

class(2) name

 id

 score

 grade

class(3) name

 id

 score

 grade

.

To access elements in the array, an index must be used. After the index, the desired component would
be specified. For example, to set values for the third student, the following statements could be used.

class(3)%name = "Fred"
class(3)%id = 4321
class(3)%score = 75.75
class(3)%grade = "C"

As with any array, the index can be an integer variable.

141

Chapter 16 ► Derived Data Types

As with single variables, it is possible to assign all components of an array element to another array
element, or another variable of the same derived data type. The following declarations and code could
be used to swap the location of the fifth student and the eleventh student.

type student
character(50) :: name
integer :: id
real :: score
character(1) :: grade

end type student

type(student), dimension(30) :: class
type(student) :: temp

temp = class(5)
class(5) = class(11)
class(11) = temp

This code fragment will copy all components from the fifth array element (of type student) into a
temporary variable (also of type student). Then, the eleventh array element can be copied into the fifth
array element (thus overwriting all previous values). And, finally, the eleventh array element can be set
to the original values from the fifth array element, which are held in the temporary variable.

 16.6 Example Two

In this example, we will write a simple program to perform some processing for students. The student
information will be stored in an array of derived data types. There will be no more than 50 students per
class. The main will call a subroutine to read student information (name and score) and another
subroutine to set the student grades. Finally, the main will call a function to calculate the class average.
The main will display the average. Routines for displaying the students are left as an exercise.

 16.6.1 Understand the Problem

The main is expected to define the appropriate derived data type for student, declare some variables of
that type and call the subroutines. The first subroutine will read student information, including a name
(up to 60 characters) and score from the user. Names and scores should continue to be read until a
blank name is entered. The score value must be between 0.0 and 100.0 (inclusive). For this simple
example, we will re-prompt for incorrect data entry (until correct data is provided). The routine must
return the count of students entered. The second subroutine sets the grades based on the following
standard scale.

A B C D F

 A>=90 80 - 89 70 - 79 60 - 69 <=59

When determining the final grade, the program should round up when appropriate. The main will call
a function to calculate and return the average of the scores. Additionally, the main will display the final
average.

142

Chapter 16 ◄ Derived Data Types

 16.6.2 Create the Algorithm

For this example main, part for the main includes a declaration, display header, call read time
subroutine, and the call the time summation subroutine. The basic steps for the main include:

! define derived data type for student
! must include name, id, grade→
! declare variables
! includes array for up to 50 students→
! display initial header
! call subroutine to read student information
! call subroutine to set grades
! use function to calculate average of scores
! display average

The basic steps for the read student information subroutine include:

! subroutine header and appropriate declarations
! loop
! prompt for student name
! read name
! if name is empty, exit loop
! loop
! prompt for student score
! read score
! check score entered
! if [score is between 0.0 and 100.0, inclusive] exit
! display error message
! end loop
! update count of students
! place values in student array
! end loop

The basic steps for the set grades subroutine include:

! subroutine header and appropriate declarations
! loop
! read score / set grade
! ≥ 90 A; 80 89 B; 70 – 79 C; 60 69 D; → → → → ≤ 59 F→
! end loop

When determining the final grade, the nearest integer intrinsic function, nint(), can be used to perform
the appropriate rounding.

The basic steps for the calculate average score function include:

! function header and appropriate declarations
! loop
! sum scores
! end loop
! calculate and return average

143

Chapter 16 ► Derived Data Types

For convenience, the steps are written as program comments.

 16.6.3 Implement the Program

Based on the algorithm, the below program could be created.

program classScores
! define data type for student, includes name, id, grade→

implicit none
type student

character(60) :: name
real :: score
character(1) :: grade

end type

! declare variables, including array for up to 50 students→
type(student), dimension(50) :: class
integer :: count
real :: average

! display initial header
write (*,'(/,a,/)') "Student Information Example Program."

! call subroutine to read student information
call readStudents (class, count)

! call subroutine to set grades
call setStudentGrades (class, count)

! use function to calculate average of scores
average = classAverage (class, count)

! display average
write (*,'(/,a, f5.1)') "Final Class Average: ", average

contains

! ***
! Subroutine to read student information (name and score).
! A blank name will stop input
! The score must be between 0.0 and 100.0 (inclusive)

subroutine readStudents (class, count)
type(student), dimension(50), intent(out) :: class
integer, intent(out) :: count = 0
character(60) :: tempname
real :: tempscore

144

Chapter 16 ◄ Derived Data Types

do
! prompt for student name and read name

write (*,'(a)',advance="no") "Enter Student Name: "
read (*,'(a60)') tempname

! if name is empty, exit loop
if (len_trim(tempname) == 0) exit

do
! prompt for student score and read score

write (*,'(a)',advance="no") &
"Enter Student Score: "

read (*,*) tempscore

! check score entered
if (tempscore >= 0.0 .and. &

tempscore <= 100.0) exit

! display error message
write (*,'(a,/,a)') &

"Error, invalid score.", &
"Please reenter time."

end do

! update count of students and place in student array
count = count + 1
class(count)%name = tempname
class(count)%score = tempscore

end do

return
end subroutine readStudents

! ***
! Subroutine to set student grades.
! ≥ 90 A; 80 89 B; 70 – 79 C; 60 69 D; → → → → ≤ 59 F→

subroutine setStudentGrades (class, count)
type(student), dimension(50), intent(inout) :: class
integer, intent(in) :: count
integer :: i

! check each score / set each grade
do i = 1, count

select case (nint(class(i)%score))
case (90:)

145

Chapter 16 ► Derived Data Types

class(i)%grade = "A"
case (80:89)

class(i)%grade = "B"
case (70:79)

class(i)%grade = "C"
case (60:69)

class(i)%grade = "D"
case (:59)

class(i)%grade = "F"
end select

end do

return
end subroutine setStudentGrades

! ***
! Function to calculate average score.

real function classAverage (class, count)
type(student), dimension(50), intent(in) :: class
integer, intent(in) :: count
integer :: i
real :: sum = 0.0

! sum scores
do i = 1, count

sum = sum + class(i)%score
end do

! calculate and return average
classaverage = sum / real(count)

return
end function classAverage

end program classScores

If the program does not work at first, the comments can aid in determining the problem.

 16.6.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of student data
values to ensure that the results are correct. If the program does not provide the correct results, each of
the subroutines and the function results should be verified individually. Each can be checked by
displaying the intermediate results to the screen. In this manner, the subroutine or function that is not
working correctly can be quickly identified. Once identified, some additional write statements inside
the subprogram can be used to help identify the specific problem. The testing and debugging process is
left to the reader as an exercise.

146

Chapter 16 ◄ Derived Data Types

 16.7 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 16.7.1 Quiz Questions

Below are some quiz questions.

1) An item in a derived data type is called?

2) How are components of a derived data type accessed?

3) Define a derived data type, circle, to store information about a circle. Must include a circle
name (max 20 characters), size (radius – a real value) and the position in 3-dimensional space
(x, y, and z → all integer values).

4) Write the declaration necessary to declare two variables named ring1 and ring2 of type circle
(from previous question).

5) Define a user-defined type, planet, to store information for a planet. Include a name (15
characters), radius (real value), area (real value), and volume (real value). Additionally, write
the declaration necessary to declare two variables named earth and mars of type planet.

6) Define a user-defined type named date for processing dates consisting of a month name (10
characters), month (integer), date of month (integer), and year (integer).

7) Based on the previous question
a) Write the statements to declare a variable named today and set it to 12/25/2013.
b) Write the statements to declare a variable named newyear and set it to January 1, 2011.

 16.7.2 Suggested Projects

Below are some suggested projects.

1) Type in the time summation program, compile and execute the program. Test on several sets of
input including the example in the explanation.

2) Write a Fortran program to read and display information about a set of planetary bodies. The
program should read the information from a file, allow the user to select a display option, and
call the appropriate routine to display that information.

The main program should call a series of subroutines as follows:

● Subroutine readPlanets() to prompt for file name of planets file, open the file (including
error checking), and read file into an array. Three errors are allowed, but if a fourth
error is made, the routine should terminate the program.

● Subroutine calcPlanetArea() to calculate the planet area based on the diameters.

147

Chapter 16 ► Derived Data Types

● Function getUserOption() to display a list of options, read the selection option.

● Subroutine displayPlanetMinMax() to display the minimum and maximum based on an
option as follows:

▪ Option (1) → Smallest and Largest Planets (based on area)

▪ Option (2) → Coldest and Hottest Planets (based on average temperature)

▪ Option (3) → Planets with Shortest and Longest Days (based on day length)

● Subroutine printPlanetsSummary() to display the planet name, distance from sun, and
planet size.

The output should be formatted as appropriate. Test on several sets of input values and verify
that the output is correct for the given input values.

3) Modify the planet program (from previous question) to sort the planets based on the radius. Test
on several sets of input values and verify that the output is correct for the given input values.

4) Type in the time class scores program, compile and execute the program. Test on several sets of
input values.

5) Modify the class scores program to assign grades based on the following scale:

F D C- C C+ B- B B+ A- A A+

0-59 60-70 70-72 73-76 77-79 80-82 83-86 87-89 90-92 93-96 97-100

Test on several sets of input values and verify that the output is correct for the given input.

6) Modify the class scores program to read the name and score file. Should include prompting for
a file, opening the file, and reading the file contents into the class array. In order to complete
this exercise, create a file containing some random names and scores. Test on several sets of
input values.

148

 17 Modules
For larger programs, using a single source file for the entire program becomes more difficult.
Fortunately, large programs can be split into multiple source files, each file can contain a subset of
subroutines and/or functions. There must be a main or primary source file that includes the main
program. The secondary file or files is referred to as a module or modules. Additionally, the modules
can then be more easily used in other, different programs ensuring that the code can be easily re-used.
This saves time and money by not re-writing routines. This section provides a description of the
formatting requirements and an example of how to set-up the modules.

 17.1 Module Declaration

The secondary source file or module must be formatted in a specific manner as follows:

module <name>
<declarations>

contains
<subroutine and/or function definitions>

end module <name>

For example, to declare a module named stats that includes a function to find the average of the
numbers in an array, the following module declaration might be used.

module stats
! note, no global variables used in this module

contains

! ***
! Simple function to find average of len values in an array.

real function average(array, len)
real, intent(in), dimension(1000) :: array
integer, intent(in) :: len
integer :: i

real :: sum = 0.0

do i = 1, len
sum = sum + array(i)

end do
average = sum / real(len)

end function average

end module stats

149

Chapter 17 ► Modules

This example assumes the real array contains len number of values up to a maximum of 1000 values.

 17.2 Use Statement

Once the module is defined, the routines from the module can be included by using the use statement.
The use statement or statements must be at the beginning of the applicable source file. For example,
below is a simple main that uses the previous stats module.

program average
use stats

implicit none
real, dimension(1000) :: arr
integer :: i, count
real :: ave

!
! Initialize array with some values.

count = 0
do i = 1, 20

arr(i) = real(i) + 10.0
count = count + 1

end do

!
! Call function to find average and display result.

ave = arraverage(arr, count)

write (*, '(/, a, f10.2, /)') "Average = ", ave

end program average

The use statement is included before the variable declarations. Any number of use statements for
defined modules may be included.

 17.3 Updated Compilation Commands

For a large program that is split between multiple source files, the compilation process must be
updated. The compilation process refers to the steps required to compile the program into a final
executable file. Each module unit must be compiled independently. This allows the programmer to
focus on one module, or set of routines, at a time. Further, for very large projects, multiple
programmers can work on separate modules simultaneously.

150

Chapter 17 ◄ Modules

The initial step is to compile each module. Assuming the module from the earlier section is named
stats.f95, the command to compile a module is:

gfortran c stats.f95

which will read the source file (stats.f95) and create two new files: an object file stats.o and a
module file stats.mod. The name of the object file is based on the name of the source file. The
name of the module file is based on the module name. While they are the same name in this example,
that is not a requirement.

The compile command is required for each module.

Once all the modules are compiled and the .o and .mod files are available, the main file can be
compiled. This step reads the .o and .mod files for each module and builds the final executable file.
For example, the command to compile the main file for the previous array average example is:

gfortran o main main.f95 stats.o

For multiple modules, each of the .o files would be listed. In this example, the stats.mod file is read
by the gfortran compiler. While not explicitly listed, the .mod files are required and used at this
step.

 17.4 Module Example Program

The following is an example program to compute the surface area and volume of a sphere. This is a
fairly straightforward problem focusing more on the creation and use of a module for some routines.

 17.4.1 Understand the Problem

This problem will be divided into two parts, the main program source file and a secondary source file
containing the subroutines and functions. While this problem is not large enough to require splitting
into multiple files, it is split to provide an example of how to use modules.

The formulas for the surface area and volume of a sphere are as follows:

surfaceArea = 4.0∗ π ∗ radius2

volume =
4.0 ∗ π

3.0
∗ radius 3

The value of π will be defined as a constant and set to 3.14159.

For this example, the main program will display some initial headers and read the radius from the user.
Once the radius is read, the main program will call functions for the surface area and the volume, and a
subroutine to display the results.

151

Chapter 17 ► Modules

 17.4.2 Create the Algorithm

Based on the problem definition, the steps for the main are:

! display header and read radius
! call functions for sphere volume and surface area
! call routine to display formatted results

The module will contain the functions and subroutine. The first function will compute the sphere
volume. The single step is:

! compute the volume of a sphere with given radius.
! sphere volume = [(4.0 * pi) / 3.0] * radius^3

The second function will compute the sphere surface area. The single step is:

! compute the volume of a sphere with given radius
! sphere volume = 4.0 * pi * radius^2

The subroutine will display the formatted results.

 17.4.3 Implement the Program

The program is presented in two parts corresponding to the main program and the secondary module
routines. While this example is not really long or complex enough to require multiple files, the
program is split in order to provide an example using a separate module file.

 17.4.3.1 Main Program

Based on the algorithm, the below program could be created.

program sphere
use sphereRoutines

implicit none
real :: radius, spVolume, spSurfaceArea

!
! Display header and read radius

write (*,'(a/)') "Sphere Example Program"
write (*,'(a)', advance="no") "Radius: "

read (*,*) radius

!
! Call functions for sphere volume and surface area

spVolume = sphereVolume(radius)

152

Chapter 17 ◄ Modules

spSurfaceArea = sphereSurfaceArea(radius)

!
! Call routine to display formatted results.

call displayResults(radius, spVolume, spSurfaceArea)

end program sphere

The name of the module, sphereRoutines in this example, must be the name of the secondary
source file.

 17.4.3.2 Module Routines

Based on the algorithms for the two functions and subroutine, the below module program could be
developed. In this example, the declaration for π is defined as a global variable. This shares the
variable between all the subroutines and functions in the module. Use of global variables is typically
limited. This provides an example of an appropriate use of a global variable.

! Example secondary source file.

module sphereRoutines
implicit none ! needed in every module

! Global declarations, if any, go here.

real, parameter :: pi = 3.14159

! **
! Subroutines and functions are included after
! the 'contains'.

contains

! **
! Compute the volume of a sphere with given radius.
! sphere volume = [(4.0 * pi) / 3.0] * radius^3

real function sphereVolume (radius)
real, intent(in) :: radius

sphereVolume = ((4.0 * pi) / 3.0) * radius ** 3

return
end function sphereVolume

! **
! Compute the volume of a sphere with given radius.
! sphere volume = 4.0 * pi * radius^2

153

Chapter 17 ► Modules

real function sphereSurfaceArea (radius)
real, intent(in) :: radius

sphereSurfaceArea = 4.0 * pi * radius ** 2

return
end function sphereSurfaceArea

! **
! Simple routine to display results.

subroutine displayResults(rad, vol, area)
real, intent(in) :: rad, vol, area

write (*,'(/, a)') ""
write (*, '(a)') "Results:"
write (*,'(3x, a, f10.2)') "Sphere Radius = ", rad
write (*,'(3x, a, f10.2)') "Sphere Volume = ", vol
write (*,'(3x, a, f10.2, /)') &

"Sphere Surface Area = ", area

return
end subroutine displayResults

! **

end module sphereRoutines

In a more complex program, multiple module files might be used. The grouping should be based on
the logical relationship of the routines. A more complicated program would require a more
comprehensive design effort.

 17.4.4 Compile the Program

The commands to compile the module file and then the main file are as follows:

gfortran c sphereroutines.f95
gfortran o modmain modmain.f95 sphereroutine.o

The first will create files sphereroutines.o and sphereroutines.mod. The second will read the
files modmain.f95 and sphereroutines.o then create the executable modmain.exe file.

 17.4.5 Test/Debug the Program

For this problem, testing would involve executing the program and entering a series of radius values
and to ensure that the results are correct. If the program does not provide the correct results, each of
the functions and the subroutines could be verified individually. Each can be checked by displaying the

154

Chapter 17 ◄ Modules

intermediate results to the screen. In this manner, the subroutine or function that is not working
correctly can be quickly identified. Once identified, some additional write statements inside the
subprogram can be used to help identify the specific problem.

 17.5 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 17.5.1 Quiz Questions

Below are some quiz questions.

1) What is the primary purpose of using a module?

2) In the main program, what statement is used to include the modules?

3) In the secondary source file, what statements is used to define and name the module?

4) How many main programs are allowed?

5) How many modules are allowed?

6) Is the contains key word needed in a module file (yes or no)?

 17.5.2 Suggested Projects

Below are some suggested projects.

1) Type in the array average main program and the array average module, compile and execute the
program. Test on several sets of input including the example in the explanation.

2) Type in the sphere volume and surface area main program and the sphere volume and surface
area module, compile and execute the program. Test on several sets of input including the
example in the explanation.

3) Update the planets program from the previous chapter, problem #2, and break the program into
a main file and a module file for the functions and subroutines.

155

Chapter 17 ► Modules

156

 18 Recursion
The Google search result for recursion, shows Recursion, did you mean recursion?

Recursion is a powerful general-purpose programming technique and is used for some important
applications including search and sorting methods. Recursion is the idea that a function may call itself
(which is the basis for the joke).

Recursion can be very confusing in its simplicity and power. The examples in this section will not be
enough in themselves for the reader to obtain recursive enlightenment. The goal of this section is to
provide an introduction to the concept on recursion. The simple examples here, which are used
introduce recursion, are meant to help demonstrate the form and structure for recursion. More complex
examples (than will be discussed here) should be studied and implemented in order to ensure a
complete appreciation for the power of recursion.

The calling process previously described supports recursion without any changes.

A recursive routine must have a recursive definition that includes:

1. base case, or cases, that provide a simple result (that defines when the recursion should stop).

2. rule, or set of rules, that reduce toward the base case.

This recursive definition is referred to as a recursive relation.

 18.1 Recursive Subroutines

A recursive subroutine declaration must be preceded by the keyword recursive. For example:

recursive subroutine <name> (<arguments>)
<declarations>

<body of subroutine>

return
end subroutine <name>

Based on this declaration the subroutine can call itself. The routine must ensure that it eventually stops
calling itself. Arguments are passed in the standard way.

The calling routine does not need any special declarations in order to call a recursive routine.

157

Chapter 18 ► Recursion

 18.2 Recursive Print Binary Example

This section provides an example recursive subroutine to accept a decimal number and print that
number in binary (i.e., using 1's and 0').

It is assumed the reader has a basic understanding of binary14 representation. This information is
summarized in the chapter on Computer Organization. Additionally, there are many references
available on the Internet.

 18.2.1 Understand the Problem

For this example, the problem is divided into two parts, the main program and the recursive subroutine.
The main program will handle the prompting and reading of the decimal number including error
checking and re-prompting as needed. The recursive subroutine will display the binary value. Since
the error checking is already performed, the recursive subroutine will assume valid input. For more
complex examples, the routine may need to perform basic error checking.

 18.2.2 Create the Algorithm

One basic algorithm to convert a decimal number into a binary number, is successive integer division
by 2. For example, given the number 13, 13 divided by 2 is 6 with a remainder of 1. Next, the 6 is
divided by 2 giving 3 with a remainder of 0. Again, the 3 is divided by 2 providing a 1 with a
remainder of 1. The final 1 is divided by 2 resulting in a 0 with a remainder of 1. With a final result of
0, the algorithm is completed. The process is shown as follows:

13
2
= 6 remainder 1

6
2
= 3 remainder 0

3
2
= 1 remainder 1

1
2
= 0 remainder 1

The remainders, always 0 or 1, represent the binary value. However, the resulting remainders are
generated in backwards order. As such, the resulting remainders 1, 0, 1, and 1 in this example must be
reversed for a final value of 11012 (as noted in chapter 2).

This process can be converted into a recursive relation as follows:

printBinary (n) = {
if n≤1 n
if n>1 printBinary (n/ 2)

output mod(num ,2)

14 For more information regarding binary representation, refer to: http://en.wikipedia.org/wiki/Binary_number

158

Chapter 18 ◄ Recursion

This definition assumes that the value of n is positive. The recursive relation can be used by directly
converting the algorithm into code.

 18.2.3 Implement the Program

Based on the recursive definition, a simple recursive subroutine can be created. In order to demonstrate
the recursive subroutine, a main program is provided that will read a decimal value from user and
ensure it is between 0 and 1,000,000, and then call the recursive routine.

! Simple recursive program to print a decimal number in binary

program binary
implicit none
integer :: decimalNumber

write (*,'(a/)') "Decimal to Binary Conversion Example"

do
write (*,'(a)', advance="no") &

"Enter Decimal Number (0 1,000,000): "
read (*,*) decimalNumber
if (decimalNumber >= 0 .and. &

 decimalNumber <= 1000000) exit

write (*,'(a)') "Error, decimal value out of range."
 write (*,'(a)') "Please reenter."

end do

write (*,'(/a, i7, a)', advance="no") &
"The decimal value of ", decimalNumber, " is "

call printBinary(decimalNumber)
write (*,'(/)')

contains

! **
! Print binary subroutine.

recursive subroutine printBinary(num)
integer, intent(in) :: num

if (num > 1) call printBinary(num/2)

write (*,'(i1)', advance="no") mod(num,2)

return
end subroutine printBinary

159

Chapter 18 ► Recursion

! **

end program binary

The spacing and indentation are not required, but help to make the program more readable. The main
program ensures that the recursive routine is not called in invalid values (i.e., values £ 0).

 18.2.4 Test/Debug the Program

For this problem, the testing would involve executing the program and entering a series of decimal
values and ensure that the results are correct. The Windows calculator provides simple convert-to-
binary function that can be used for verification.

If the program does not provide the correct results, the input to the recursive subroutine should be
verified (via write statements). Next, some additional write statements in the recursive subroutine can
be added to provide insight into what is being done for each call.

 18.3 Recursive Functions

A recursive function declaration must be preceded by the keyword recursive. In addition, the keyword
result must be explicitly added to the function declaration. The result keyword is used to specify a
single variable for the return value. Similar to a standard function, the result variable must be set to a
return value to the calling routine.

The function type specifies the type of the result variable. For example:

<type> recursive function <name> (<arg's>) result (<variable>)
<declarations>

<body of function>

<variable> = expression

return
end function <name>

The main does not need any special declarations.

 18.4 Recursive Factorial Example

This section provides an example recursive function to computer the mathematical factorial15 function.
It is assumed the reader is familiar with the factorial function.

15 For more information regarding factorial, refer to: http://en.wikipedia.org/wiki/Factorial

160

Chapter 18 ◄ Recursion

 18.4.1 Understand the Problem

The factorial function is mathematically defined as follows:

n! = ∏
k=1

n

k

Or more familiarly, you might see 5! as:

n! = 5 × 4 × 3 × 2 × 1

For this example, the problem is divided into two parts, the main program and the recursive function.
The main program will handle the prompting and reading of the n value. This will include error
checking and re-prompting as needed. The recursive function will compute and return the factorial
value. Since the error checking is performed performed, the recursive function will assume valid input.

For more complex examples, the function itself may need to perform the error checking. As such, a
simple helper function could be used to verify the input value or values before calling the recursive
function.

 18.4.2 Create the Algorithm

A typical recursive relation for factorial is as follows:

factorial(n) = {1 if n=0
n × factorial(n−1) if n≥1

This definition assumes that the value of n is positive.

It must be noted that this function could easily be computed with a loop. However, the reason this is
done recursively is to provide a simple example of how a recursive function is developed using a
familiar mathematical function.

 18.4.3 Implement the Program

Based on the recursive definition, a simple recursive function can be created. In order to demonstrate
the recursive function, a main program is provided that will read the decimal value from user and
ensure it is between 1 and 15, and then call the recursive routine.

The recursive function declaration uses an input argument, n, and a result argument, ans, in this
example. The input argument must be declared as intent(in) in the standard manner. However, the
result argument is an out by definition and will assume the type of the function itself, integer in this
example.

For the recursive factorial function, the basic algorithm is provided as part of the recursive definition.
The example main will read the n value from the user, call the factorial function, and display the
results.

! Simple recursive function example.

program recursionExample
implicit none

161

Chapter 18 ► Recursion

integer :: num, numFact
write (*,'(a/)') "Recursion Example"

do
write (*,'(a)', advance="no") "Enter N (115): "
read (*,*) num
if (num >= 1 .and. num <= 15) exit
write (*,'(a)') "Error, N out of range."
write (*,'(a)') "Please reenter."

end do

numFact = fact(num)
write (*,'(a, i2, a, i10,/)') "Factorial of ", num, &

" is ", numFact

contains

! ***
! Factorial function

integer recursive function fact(n) result (ans)
implicit none
integer, intent(in) :: n

if (n == 1) then
ans = 1

else
ans = n * fact(n1)

end if

return
end function fact

! ***

end program recursionExample

The spacing and indentation are not required, but help to make the program more readable. The main
program ensures that the recursive routine is not called in invalid values (i.e., values £ 0).

 18.4.4 Test/Debug the Program

For this problem, the testing would involve executing the program, entering a number, and ensuring
that the result is correct. The Windows calculator includes a factorial function which can be used to
verify the result.

If the program does not provide the correct result, the input to the recursive function should be verified
(via write statements). Next, some additional write statements in the recursive function can be added to
provide insight into what is being done for each call.

162

Chapter 18 ◄ Recursion

 18.5 Recursive Factorial Function Call Tree

In order to better understand recursion, a recursion tree can help show how the recursive calls interact.

When the initial call to factorial function occurs from main, the main will start into the fact() function
(shown as step 1). Since the argument of 5 is not a base case, the fact() function must call fact() again
with the argument of n-1 or 4 in this example (step 2). And, again, since 4 is not the base case, the
fact() function must call fact() again with the argument of n-1 or 3 in this example (step 3).

This process continues until the argument passed into the fact() function meets the base case which is
when the arguments is equal to 1 (shown as step 5). When this occurs, only then is a return value
provided to the previous call (step 6). This return argument is then used to calculate the previous
multiplication which is 2 times 1 which will return a value to the previous call (as shown in step 7).
This process will continue (steps 8, 9, and 10) until the main has a final answer.

Since the code being executed is the same, each instance of the fact() function is different from any
other instance only in the arguments and any local values (none in this example).

163

Illustration 3: Factorial Recursion Tree

fact:
 5 * fact(4)

fact:
 4 * fact(3)

fact:
 3 * fact(2)

main:
 f = fact(5)

fact:
 2 * fact(1)

fact:
 return 1

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Chapter 18 ► Recursion

It should also be noted that the height of the recursion tree is directly associated with the amount of
memory used by the recursive function. For problems where the recursion tree is very large, this can
have a negative impact on overall performance of a recursive routine.

 18.6 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 18.6.1 Quiz Questions

Below are some quiz questions.

1) What are the two requirements for a recursive definition?

2) In recursion, the case for which a solution is obtained directly is called what?

3) What keyword is required for a recursive subroutine?

4) What two keywords are required for a recursive function?

5) What special requirements are required of the calling routine in order to call a recursive
subroutine or recursive function?

6) For a recursive routine, what would happen if the routine does not stop recursing?

7) Create a recursion tree for the recursive Fibonnaci function (as described in the following
suggested projects section) with the input of 13. Note, the recursive Fibonnaci function requires
two recursive calls for the non-base case step.

 18.6.2 Suggested Projects

Below are some suggested projects.

1) Type in the print binary main program and recursive subroutine. Test on several data sets and
verify that the program produces the correct results.

2) Type in the factorial main program and recursive function. Test on several data sets and verify
that the program produces the correct results.

3) The recursive definition of Fibonnaci function is as follows:

fib(n) = {
1 if n=0
1 if n=1
fib(n−1)+ fib(n−2) if n≥2

Create a main program to read the n value from the user and ensure it is between 1 and 40.
Develop recursive function, fib, to recursively compute the Fibonnaci number based on the
provided definition. Note, the recursive Fibonnaci function requires two recursive calls for the
non-base case step.

164

Chapter 18 ◄ Recursion

4) Develop a recursive subroutine to recursively print a star tree. Based on an initial value, n, the
star tree should be displayed. For example, for an n value of 5, the program should output
something similar to the following:

Recursive Subroutine Program

Enter Number of Stars: 5

Star Tree:

* * * * *
* * * *
* * *
* *
*

Create a main program to read the n value from the user and ensure it is between 1 and 50.
Develop recursive subroutine, printStars(), to recursively print the start tree as shown. The
subroutine should print one line per call. For successive recursive calls, the n value passed as
an argument should be decremented. The based case would be one (1) star.

5) Write a program using a recursive function to determine the number of possible paths through a
two-dimensional grid. The only allowed moves are one step to the right or one step down. For
example, given a grid as follows:

0 1 2

0 start

1

2

3 end

Moving from the starting location, (0,0) in this example, going to the end location, (3,2) in this
example, can be performed in 10 different ways. Two, of the ten, different ways are shown in
the example above. The function must be recursive.

Create a main program to read the initial grid coordinates and ensure that they are valid
(positive values) and that the end coordinates are greater than the start coordinates. Create a
recursive function, countPaths(), to determine the number of possible paths through a two-
dimensional grid. The function will accept a start coordinate (row,col) and a final end
coordinate (row,col).

165

Chapter 18 ► Recursion

6) The Tower of Hanoi is a mathematical puzzle that consists of three pegs, and a number of disks
of different sizes which can slide onto any peg. The puzzle starts with the disks neatly stacked
in order of size on one peg, the smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack
to another peg, obeying the following rules:

◦ Only one disk may be moved at a time.

◦ Each move consists of taking the upper disk from
one of the pegs and sliding it onto another peg, on
top of the other disks that may already be present
on that peg.

◦ No disk may be placed on top of a smaller disk.

The following is a recursive definition for the problem:

 hanoi (n , from , to , by) = {
write(move the disc from from to to) if n=1

hanoi (n−1, from, by , to) if n>1
hanoi (1, from , to , by)
hanoi (n−1, by , to , from)

Create a main program to read and validate the number of disks, n, from the user and ensure it
is between 1 and 10. Develop recursive function, hanoi, to recursively compute a solution to
the Tower of Hanoi problem.

166

 19 Character String / Numeric Conversions
Characters string values, such as “123” cannot be used to perform numeric operations such as addition
or multiplication. As such, for more complex programs, there is sometimes the need to convert
between a character string representing a numeric value and an actual real or integer number.

These conversions can be performed using what is referred to as an internal read or an internal write.
Basically, the read or write functions and associated format statements can be used to perform basic
conversions. Instead of reading from an open file, the read and write operations can read and write
directly from and to variables. The specified format provides guidance for the conversion result.

Based on the input, a conversion may not be possible. For example, the character string “3.14” can be
converted into the real value of 3.14. However, the character string “3.1z4” could not be converted
since the 'z' is not a legal numeric value.

If a conversion is not possible, an error would be generated. If not handled, such an error would crash
the program. In order to address and handle any potential errors, the iostat parameter for the read/write
operation is used as previously described in the file operations chapter.

 19.1 Character String to Numeric Conversion

A character string can be converted into an integer or real value using an internal read operation. The
string is provided as the input instead of a file unit number. The numeric variable is provided as the
location for the result of the read operation. The format will provide guidance for the conversion.

The following is a simple example that will declare two strings and convert the first into an integer
value and the second into a real value. Additionally, a third string conversion is perform on a invalid
numeric string (to better show the error handling).

! Example program to use an internal read for
! character / numeric conversion.

program cvtExample 1

implicit none
integer :: cvtErr
character(4) :: iString = "1234"
character(7) :: rString = "3.14159"
character(7) :: badString = "3.14z59"
integer :: iNum1, iNum2
real :: pi, tau

write (*,'(a, /)') "Example Conversion Program."

167

Chapter 19 ► Character String / Numeric Conversions

!
! Convert string to an integer value.

read (iString, '(i10)', iostat=cvtErr) iNum1

if (cvtErr == 0) then
iNum2 = iNum1 * 2
write (*,'(a, i5, /, a, i5, /)') &

"num1 = ", iNum1, "num2 = ", iNum2
else

write (*,'(a, /)') "Error, invalid integer string."
end if

!
! Convert string to a real value.

read (rString, '(f17.6)', iostat=cvtErr) pi

if (cvtErr == 0) then
tau = pi * 2.0
write (*,'(a, f5.3, /, a, f5.3, /)') &

"pi = ", pi, "tau = ", tau
else

write (*,'(a, /)') "Error, invalid real string."
end if

!
! Convert string to a real value.

read (badString, '(f12.4)', iostat=cvtErr) pi

if (cvtErr == 0) then
tau = pi * 2.0
write (*,'(a, f5.3, /, a, f6.3)') &

"pi = ", pi, "tau = ", tau
else

write (*,'(a, /)') "Error, invalid real string."
end if

end program cvtExample1

The specific formats used on the read operations in the example are wider or larger than the expected
number (which is allowed). Should a smaller format be used, it would either truncate the value or
possibly generate a conversion error. To ensure appropriate conversion, the final values should be
verified against the expected result.

168

Chapter 19 ◄ Character String / Numeric Conversions

An example of the output for this program is as follows:

Example Conversion Program.

num1 = 1234
num2 = 2468

pi = 3.142
tau = 6.283

Error, invalid real string.

The multiplication by 2 for each of the numeric values was performed only as an example since
multiplication can only be performed on numeric data types (i.e., integer, real, or complex).

 19.2 Numeric to Character String Conversion

An integer or real value can be converted into a character string using a write operation. The string is
provided as the output variable instead of a file unit number. The numeric variable is provided as the
input for the write operation.

The following is a simple example that will convert an integer into a string and a real into a string.
Some numeric operations are performed on the numeric values and then the resulting strings are
concatenated with another string. Concatenation can only be performed on character data types.

! Example program to use an internal write for
! character / numeric conversion.

program cvtExample2
implicit none
integer :: cvtErr
character(50) :: str1, str2, msg1, msg2
integer :: iNum=2468
real :: pi = 3.14, tau

write (*,'(a, /)') "Example Conversion Program."

!
! Convert integer value to a string.

iNum = iNum / 100
write (str1, '(i3)', iostat=cvtErr) iNum

if (cvtErr == 0) then
msg1 = "My age is " // str1
write (*,'(a, a)') &

"Message 1 = ", msg1
else

169

Chapter 19 ► Character String / Numeric Conversions

write (*,'(a, /)') "Error, invalid conversion."
end if

!
! Convert real value to a string.

tau = pi * 2.0
write (str2, '(f5.3)', iostat=cvtErr) tau

if (cvtErr == 0) then
msg2 = "The value of TAU is " // str2
write (*,'(a, a, /)') &

"Message 2 = ", msg2
else

write (*,'(a, /)') "Error, invalid conversion."
end if

end program cvtExample2

An example of the output for this program is as follows:

Example Conversion Program.

Message 1 = My age is 124
Message 2 = The value of TAU is 6.283

Once the numeric values are converted into strings, the character functions and character operations
can be used as needed.

 19.3 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 19.3.1 Quiz Questions

Below are some quiz questions.

1) Which operation, internal read or internal write, is required to convert a character string
containing a numeric value?

2) Which operation, internal read or internal write, is required to convert a real value into a
character string?

3) Provide an appropriate statement to convert the character string sNum=“123” into an integer
variable iNum. The error status should be written to the variable cvtErr. You may assume all
variables are already declared and initialized.

4) Provide an appropriate statement to convert the integer variable iNum=234 into a character string
sNum. The error status should be written to the variable cvtErr. You may assume all variables are
already declared and initialized.

170

Chapter 19 ◄ Character String / Numeric Conversions

 19.3.2 Suggested Projects

Below are some suggested projects.

1) Type in the character string to numeric values conversion example program. Update the values
of the character strings with different data and verify that the program produces the correct
results.

2) Update the program from the previous question to read a series of character strings from the
user, attempt conversion for each character string to a real value. If invalid, the user should be
re-prompted. If valid, the sum of the values should be maintained. When the user enters a 0 ,
the program should stop reading numbers, display the final sum, and terminate.

3) Type in the numeric values to character string values conversion example program. Update the
values of the real and integer values with different numbers and verify that the program
produces the correct results.

4) Develop a program to read a series of integer values, sum the values, and convert the final sum
into a character string. The string should be concatenated with the string “The sum is ” and
displayed to the terminal using a single character string variable.

5) Write a program to prompt the user for an integer number between 100 and 999, re-prompting
until a valid number is provided. When a valid number is provided, create a file name in the
form of “file<number>.txt”, open/create the file, and write all numbers from 1 to the number,
one per line, and close the file. For example, if 42 is entered, the file file42.txt should be
created and contain the numbers 1, 2, 3, …, 42 (one per line).

171

Chapter 19 ► Character String / Numeric Conversions

172

 20 System Services
The term system services generally refers to asking the operating system for information.

The read, write, and file operations (open, read, write, close) are common system services and have
already been addressed in a previous chapter.

Other system services include obtaining the date and/or time from the operating system and obtaining
the command line arguments (if any). The term command line arguments is used to refer to
information entered on the command line after the program name. This allows the user to provide
some information to the program before it starts (or as the program is started), which might save time
as compared to prompting for and interactively reading the information at run-time.

While there are many system services, only these basic ones are presented for reference. These system
services may be useful when working on more complex problems. Additionally, the calls and usage for
other system services is very similar to how these are performed.

 20.1 Date and Time

The date and time functions are combined into a single system service call. The date and time values
can be obtained as character strings, as integers, or both simultaneously. The options for date and time
as explained in the next section followed by an example.

It must be noted that if the operating system has an incorrect date or time, the values returned to the
program will also be incorrect.

 20.1.1 Date and Time Options

The date and/or time values are are obtained from the operating system using the get_date_time()
system service call. The argument or arguments for the system service call must specify at least one of
the following options:

● date = <character(8)>
● time = <character(10)>
● zone = <character(5)>
● values = <integer values array>

As noted, each option must provide a location of where to place the results of the specified size and
date type. The options are comma separated, similar to the read and write calls noted in a previous
chapter. At least one argument must be included in the call.

The zone, or time zone, option will provide the time difference between local time and Coordinated
Universal Time (UTC16). The character string will provide a result in hours:minutes format and the integer
values will be in minutes only. However, the minutes can be easily converted to hours.

16 For more information regarding coordinated universal time, refer to:
http://en.wikipedia.org/wiki/Coordinated_Universal_Time

173

Chapter 20 ► System Services

The options and associated values returned as more fully described in the following table.

Option Data Type Description

date character(8) The string returned will be in the form
YYYYMMDD, where YYYY is year, MM is
month, and DD is date.

time character(10) The string returned will be in the form
HHMMSS.SSS where HH is hour, MM is
minute, SS is second, and SSS is
milliseconds.

zone character(5) The string returned will be in the form of
±HHMM, where HHMM is the time
difference between local time and
Coordination Universal Time.

values integer array, 8
elements

The values will be returned in the 8 value
integer array as follows:

• values(1) → year
• values(2) → month (1-12)
• values(3) → date (1-31)
• values(4) → month (1-12)
• values(5) → hour (0-23)
• values(6) → time zone difference

(minutes)
• values(7) → seconds (0-59)
• values(8) → milleseconds (0-999)

Each argument is optional, but at least one argument must be included. Multiple arguments are
allowed.

 20.1.2 Date and Time Example Program

The following as an example program that obtains the date and time information from the operating
system in various formats. The final results are shown for reference.

! Example program to obtain the date and time from the system.

program timeDateExample

!
! Declarations.

implicit none

174

Chapter 20 ◄ System Services

integer, dimension(8) :: valuesArr
character(len=8) :: today
character(len=10) :: now
character(len=5) :: myzone
integer :: i

!
! Display simple header.

write (*,'(a)') &
"Example Program for Date and Time Functions."

!
! Get date, time, and zone from system as characters.
! Display to screen for reference.

call date_and_time(date=today)
write (*,'(/a, a)') "Today is: ", today

call date_and_time(time=now, zone=myzone)
write (*,'(a, a)') "Time is: ", now
write (*,'(a, a/)') "Time Zone is: ", myzone

!
! Get all date values from the system as integers.
! Display to screen for reference.

call date_and_time(values=valuesArr)

write (*,'(a)') "Values Array:"

write (*,'(a, i4)') "Date, Year: ", valuesArr(1)
write (*,'(a, i2)') "Date, Month: ", valuesArr(2)
write (*,'(a, i2)') "Date, Day: ", valuesArr(3)
write (*,'(a, i2)') "Time, Hour: ", valuesArr(5)
write (*,'(a, i2)') "Time, Minutes: ", valuesArr(6)
write (*,'(a, i2)') "Time, Seconds: ", valuesArr(7)
write (*,'(a, i3)') "Time, Millseconds: ", valuesArr(8)

write (*,'(/,a, i8)') &
"Time difference with UTC in minutes: ", &

valuesArr(4)

write (*,'(a, i2, a1, i2.2 ,/)') &
"Time difference with UTC in hours: ", &

valuesArr(4)/60, ":", mod(valuesArr(4), 60)

end program timeDateExample

175

Chapter 20 ► System Services

While this program does not really use the time or date values for anything meaningful, it does provide
an example of how the information is obtained for use in other, more complex programs. The output of
the this example program is shown as follows:

Today is: 20131212
Time is: 154032.491
Time Zone is: 0800

Values Array:
Date, Year: 2013
Date, Month: 12
Date, Day: 12
Time, Hour: 15
Time, Minutes: 40
Time, Seconds: 32
Time, Millseconds: 491

Time difference with UTC in minutes: 480
Time difference with UTC in hours: 8:00

The UTC for Las Vegas, Nevada is indeed, -8 hours as shown. The results for the UTC will be based
on the actual geographic location of where the system executing the program is located.

 20.2 Command Line Arguments

The usage of command line arguments, information entered on the command line after the program
name, can be very useful in specific circumstances. By allowing the user to provide some information
on the command line, it saves the effort of entering the information interactively after the program
starts. The term command line arguments is sometimes referred to as command line options.

For example, when starting a Fortran program for a simple game, the persons name could be provided
on the command line. If the name is provided, the program could use that name. Otherwise, the
program could use a generic name such as 'player'. The command line might appears as follows:

c:\fortran> tictactoe ed

On Unix based systems, this might be:

% ./tictactoe ed

Where tictactoe is the name if the program and 'ed' is the single command line argument.

Multiple command line arguments can be provided, but must be separated with a space or multiple
spaces. There is no predefined required format. The formatting or ordering requirements are up to the
program.

The gfortran compiler requires command line arguments for the various options include the input file
name (i.e., tictactoe.f95) and the output file name (i.e., -o tictactoe) specification. For example,

c:\fortran> gfortran tictactoe.f95 o tictactoe

176

Chapter 20 ◄ System Services

For the gfortran compiler, there is no required order for the command line arguments. However, a
valid output file name must follow the '-o' argument.

The error handling for command line arguments is typically handled differently. Many programs check
the command line arguments, and if incorrect for any reason, display an error message and terminate
the program. This is what the gfortran compiler does when invalid or incorrect arguments are
provided.

It would be possible to create a program that could verify arguments, and if incorrect, display an error
message and then request correct input from the user. The handling of the command line arguments
processing is entirely the responsibility of the program and not the operating system.

 20.2.1 Argument Count

There are generally two steps to obtaining the command line arguments. The first step is getting the
argument count or the number of arguments entered on the command line. The previous tic-tac-toe
example has one argument (i.e., 'ed'). The previous gfortran example had three (i.e., 'tictactoe.f95', '-o',
and 'tictactoe').

The argument count is obtained using the command_argument_count() system service as follows:

integer :: myCount
myCount = command_argument_count()

Which will return the count in the variable myCount (as shown above). The count will be zero if no
arguments are entered.

 20.2.2 Get Arguments

Once the argument count is available, the actual arguments can be obtained. The arguments are always
returned as character values. If the argument is meant to be used as a real or integer value, it must be
converted. The Character String / Numeric Conversions chapter provides a description of how this can
be accomplished.

When obtaining the command line arguments, the get_command_argument() system service is
used. An argument is returned into a specified character variable. The character variable should be
large enough (i.e., able to hold enough characters) to store the expected argument. The actual length of
the returned argument can optionally be provided. Additionally, if the character variable is too small,
the returned result will be truncated and the status set accordingly to indicate an error.

The options and associated values returned are described in the following table.

Option Data Type Description

length integer Input integer argument indicating which
argument should be returned. Must be
between 1 and the
command_argument_count() value.

177

Chapter 20 ► System Services

value character(*) Output character variable of where to store
the Nth argument as specified by the length
value (above). The variable must be
declared with an appropriate size.

length integer Output integer argument for the actual
length of the string returned by the value
argument (above).

status integer Output integer argument for the returned
status value. A return status value of 0 is
success and -1 is fail.

The first two arguments are required and the final two arguments are optional.

 20.2.3 Command Line Arguments, Example Program

This simple example obtains the command line argument count and displays the arguments to the
screen for reference. In this example, the program will expect a real value as the first argument and an
integer value as the second argument (if a second argument is provided). Any additional arguments,
while not used, are still displayed the screen along with the argument count value.

For this example, since the number of arguments is unknown ahead of time, an array to hold the
arguments is allocated at run-time. While this is not necessary, it does help provide a more complete
example. Such a process would only be appropriate if a varying number of command line arguments is
desired.

! Example program to demonstrate how to obtain the
! command line arguments from the system.

program argsExample

implicit none
integer :: argCount, allocStatus, rdErr, i, iNum
real :: rNum
character(len=80), dimension(:), allocatable :: args

!
! Get command line argument count from system.

argCount = command_argument_count()

if (argCount == 0) then
write (*,'(a)') "No command line arguments provided."
stop

end if

178

Chapter 20 ◄ System Services

!
! Allocate an array to hold the arguments.

allocate(args(argCount), stat=allocStatus)

if (allocStatus > 0) then
write (*,'(a)') &

"Allocation error, program terminated."
stop

end if

!
! Get each argument, one at a time, from system.

do i = 1, argCount
call get_command_argument(number=i,value=args(i))

end do

!
! Display arguments to screen.

if (argCount == 0) then
write (*,'(a)') "No command line arguments provided."

else
if (argCount == 1) then

write (*,'(a, i1, a)') "There was ", &
argCount, " command line argument."

else
write (*,'(a, i2, a)') "There were ", &

argCount, " command line arguments."
end if

write (*,'(/,a)') "The arguments were: "
do i = 1, argCount

write (*,'(a, a)') " ", trim(args(i))
end do

write (*,*)
end if

!
! Convert a string to a numeric value using an internal read.

if (argCount >= 1) then
read (args(1), '(f12.5)', iostat=rdErr) rNum
if (rdErr == 0) then

write (*,'(a, f12.5)') &
"Argument 1 Real Number = ", rNum

else

179

Chapter 20 ► System Services

write (*,'(a)') "Error, invalid real value."
end if

end if

if (argCount >= 2) then
read (args(2), '(i10)', iostat=rdErr) iNum
if (rdErr == 0) then

write (*,'(a, i10)') &
"Argument 2 Integer Number = ", iNum

else
write (*,'(a)') "Error, invalid integer value."

end if
end if

write (*,*)

end program argsExample

An example of the output for this program with valid command line arguments provided is shown
below. The executable name of the example program is 'args'.

c:\fortran> args 3.14 23 hello world
There were 4 command line arguments.

The arguments were:
 3.14
 23
 hello
 world

Argument 1 Real Number = 3.14000
Argument 2 Integer Number = 23

c:\fortran>

Another example of the output for this program with invalid command line arguments provided is
shown as follows:

c:\fortran> args 3.14 23 hello world
There were 4 command line arguments.

The arguments were:
 hello
 3.14
 23
 world

Error, invalid real value.

180

Chapter 20 ◄ System Services

Error, invalid integer value.

c:\fortran>

Note, the order for the valid and invalid arguments was chosen arbitrarily.

 20.3 Exercises

Below are some quiz questions and project suggestions based on this chapter.

 20.3.1 Quiz Questions

Below are some quiz questions.

1) Can the date alone be obtained (i.e., without obtaining the time) using the get_date_time()
system service (yes/no)?

2) When using the get_date_time() system service to obtain the integer date and time values, what
is the index number for the:

1. The month value.

2. The hour value.

3. The year value.

3) How can the integer time zone value be converted to hours:minutes format?

4) Provide the get_date_time() system service call to obtain the current date string into the already
declared character variable dStr.

5) Provide the get_date_time() system service call to obtain the current time string and time zone
string into the already declared character variables timeStr and zoneStr.

6) Provide the get_date_time() system service call to obtain the current date/time integer values,
and the current date string into the already declared 8 element integer valuesArr array.

7) If there are no arguments entered on the command line, what is returned by the
get_command_argument() system service?

8) Provide an appropriate statement to obtain the 3rd command line argument, the argument length, and
a status value. You may assume the variables for the command line argument (character), named
args, the length (integer), named arg3length, and the status (integer), named, arg3stat are already
declared appropriately.

 20.3.2 Suggested Projects

Below are some suggested projects.

1) Type in the get date and time example program. Update the output to more clearly display only
the current date and time on one line. Removal the unnecessary or redundant output.

181

Chapter 20 ► System Services

2) Type in the get command line arguments example program. Execute the program using a
variety of different expected and unexpected arguments.

3) Develop a program that reads command line arguments for a title and time (hours and minutes).
Calculate and display the difference between the current time and the time from the command
line. If the command line arguments are incomplete or incorrect, an error message should be
displayed and the program, terminated. The program should use 24-hour format. One possible
approach to determining the time difference would be to convert each time into minutes (from
hours and minutes), compute the difference, and convert the difference in minutes back to hours
and minutes. The final output should display the title, the system time, the entered time, and the
time difference. All times should be displayed in hours:minutes format.

4) Write a program to get the date from the system and display a formatted date. The formatted
date should be: <day of week>, <month name> <day>, <year>. For example, 12/2/2013 should
be displayed as Monday, December 2, 2013. Each string should include only the appropriate
spacing. Specifically, there should be no extra spaces between the words or numbers (including
the date value, 2 in the example).

To calculate the day on which a particular date falls, the following algorithm may be used.
Note, all variables are integers and the divisions are integer divisions.

a =
14 − month

12

y = year − a

m = month + 12 × a − 2

dayNum = [day + y +
y
4
−

y
100

+
y

400
+ (31 ×

m
12)] mod 7

Where the month, day, and year variables are the integer date values (12, 2, and 2013 in the
previous example). The final value of dayNum is 0 for a Sunday, 1 for a Monday, 2 for a
Tuesday, and so forth with the maximum value of 6 for Saturday.

5) Update the program from the previous question to write the formatted date to a file. The file
name should be created based on the current date in the following format
“file<MMDDYY>.txt” For example, for a date of 12/02/2013, the file should be named
file120213.txt and contain the character string Monday, December 2, 2013.

6) Write a program to obtain the current date and attempt to open a file based on the date in the
following format, “file<MMDDYY>.txt”. For example, for a date of 12/02/2013, the file
should be named file120213.txt. If the file exists, the contents should be displayed to the
screen. If the file does not exist, an appropriate error message should be displayed.

182

 21 Appendix A – ASCII Table
This table lists the American Standard Code for Information Interchange (ASCII) characters or symbols
and their decimal numbers.

Char. Dec. Char. Dec. Char. Dec.

 32 @ 64 ` 96

! 33 A 65 a 97

" 34 B 66 b 98

35 C 67 c 99

$ 36 D 68 d 100

% 37 E 69 e 101

& 38 F 70 f 102

' 39 G 71 g 103

(40 H 72 h 104

) 41 I 73 i 105

* 42 J 74 j 106

+ 43 K 75 k 107

, 44 L 76 l 108

- 45 M 77 m 109

. 46 N 78 n 110

/ 47 O 79 o 111

0 48 P 80 p 112

1 49 Q 81 q 113

2 50 R 82 r 114

3 51 S 83 s 115

4 52 T 84 t 116

5 53 U 85 u 117

6 54 V 86 v 118

7 55 W 87 w 119

8 56 X 88 x 120

9 57 Y 89 y 121

: 58 Z 90 z 122

; 59 [91 { 123

< 60 \ 92 | 124

= 61] 93 } 125

> 62 ^ 94 ~ 126

? 63 _ 95 127

183

Chapter 21 ► Appendix A – ASCII Table

184

 22 Appendix B – Windows Start-Up Instructions
The following provides some specific instructions for getting started. These instructions are
specifically geared for using a Windows based PCs. This includes all versions of Windows from
Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 10.

The basic process is very similar to MAC and Linux (which is not covered here).

 22.1 Working Files

Before working with Fortran program files, you should decide where you will be working (C\: drive,
USB drive, network drive, etc.) and create a working directory where your files will be placed. In
general, it will be easier if your Fortran files are not mixed with other, unrelated files. This directory
should be someplace you can easily get to it. That might be on your home workstation/laptop, on a
network drive, or on a USB drive.

 22.2 Obtaining The Compiler

First, you will need to download and install the GNU Fortran compiler. The main web page for the
GNU Fortran compiler is:

http://gcc.gnu.org/fortran/

This page provides general information regarding the Fortran compiler development effort, project
objectives, and current status.

More specific information, and the Windows compiler binaries, can be found on the gFortran Wiki
page, which is located at:

http://gcc.gnu.org/wiki/GFortran

This page contains links to the Gfortran binaries. On this page, click on the link labeled:

Binaries for Windows, Linux, and MacOS

Which will display the page for the GNUBinaries for various platforms, including Windows, MacOS,
and Linux. Click on the Windows link, which will show the various Windows options. For standard
Windows (XP/Vista/7/8), the heading MinGW build (“native Windows” build), includes a link for the
latest installer. Click on the link and download the Windows installation program. You will need to
access this file to perform the actual installation. There is no need to install the MinGW build.

This version will work on all supported Windows versions including Windows Vista, Windows XP,
Windows 7, Windows 8, and Windows 10.

After downloading, install the compiler. The installation can be accomplished by double-clicking on
the downloaded file. As with all Windows installs, it will require System Administrator privileges.

185

http://gcc.gnu.org/wiki/GFortran

Chapter 22 ► Appendix B – Windows Start-Up Instructions

 22.3 Command Prompt

In order to compile and work with programs under Windows, we will need to provide typed commands
to the computer. This is done from within the “Command Prompt” utility.

 22.3.1 Windows XP/Vista/7

In Windows 7, the “Command Prompt” is usually under Programs → Accessories → Command
Prompt.

 22.3.2 Windows 8/10

In Windows 8 or Window 10, the “Command Prompt” can be found by using Search and is listed under
the Windows System heading.

 22.3.3 Command Prompt Window

The open Command Prompt window for any Windows version will look similar to the following:

Once the Command Prompt is open, the device and directory for the working files can be set.

 22.3.4 Device and Directory

In order to compile and work with programs under Windows, a working directory should be
established. This is where the program files will be stored. First, establish the device of the working
directory. If the files are on C:\ (the main hard drive), the device is already set. If the working
directory is located on a network drive, alternate drive, or USB drive, the device will need to be set.

Using the “My Computer”, determine the device or drive letter where you directory is located. Type
that letter at the prompt in the Command Prompt window. For example, if your device is K, you would
type “k:”.

At the drive prompt (i.e., “C:\>” or “K:\>”) you will need to change directory into the directory where
your files are (if you created one). The “cd <dir_name>” command can be used. For example, if the
directory is named cs117, the command would be “cd cs117”.

186

Chapter 22 ◄ Appendix B – Windows Start-Up Instructions

For example:

C:\Documents and Settings\Ed\My Documents> k:
C:\> cd cs117

At this point, typing dir (for directory) will provide a list of files in the directory. While the format
will appear different, the files are the same as shown in the My Computer listing.

 22.4 Compiler Installation Verification

To ensure the compiler is installed correctly, open the “Command Prompt”, and type gfortran at the
prompt.

C:\cs117> gfortran
gfortran: fatal error: no input files
compilation terminated.

The “no input files” message means that the installation was completed correctly. It is not necessary to
set the device or directory in order to perform this verification.

However, if the following message is displayed,

C:\cs117> gfortran
'gfortran' is not recognized as an internal or external command,
operable program or batch file.

means that the Fortran compiler is not installed. The installation issue must be addressed before
continuing. Once the installation is completed successfully, the compilation steps detailed in Chapter 3
can be completed.

 22.5 Compilation

Once the Fortran compiler is installed, programs can be compiled. Open the “Command Prompt”, and
set the device and directory as appropriate.

At this point the program can be compiled, using “gfortran. The optional “-o” qualifier is used to set
the name of the output file. To execute, you can type the name of the executable (that was specified
with the “-o”).

To compile the example program, the following command would be entered:

C:\cs117> gfortran o hw hw.f95

This command will tell the 'gfortran' compiler to read the file hw.f95 and, if there are no errors,
create an executable file named hw.exe. If there is an error, the compiler will generate an error
message, sometimes cryptic, and provide a line number. Such errors are usually the result of mistyping
one of the instructions. Any errors must be resolved before continuing.

187

Chapter 22 ► Appendix B – Windows Start-Up Instructions

 22.6 Executing

To execute or run a program, type the name of the executable file. For example, to execute or run the
hw.exe program:

C:\cs117> hw
 Hello World
C:\cs117>

Which will execute the example program and display the “Hello World” message to the screen.

 22.7 Example

A more complete example is as follows:

It is not necessary to type the extension (i.e., “.exe”) portion of the file name.

188

 23 Appendix C – Random Number Generation
Generating random numbers is a common requirement for many problems. The following provides a
summary of utilizing the built-in Fortran random number generator routines.

 23.1 Initialization

The first step in generating random numbers is to initialize the Fortran random number generator,
random_seed(). The most basic initialization is performed as follows:

call random_seed()

This will initialize the random number generator with a default seed. As such, each execution will re-
generate the same series of random numbers for each execution. While this may not appear very
random, since successive executions generate the same series of random numbers, the testing is more
repeatable.

 23.2 Generating Random Number

To request a random number, a real variable must be declared and then passed to the following call to
the built-in random_number() routine. For example:

call random_number(x)

The random number between 0.0 and 1.0 such that 0.0 ≤ random number < 1.0.

In order to obtain a larger number, it can be multiplied by an appropriate scale. For example, to
simulating the roll of a dice, a random integer number between 1 and 6 would be required. The
following code would obtain the random number and then scale it and convert to integer as required.

call random_number(x)
die = int(x*6.0) + 1

Since the 0.0 is a possible value and 1.0 is not (0.0 ≤ random number < 1.0) 1 is added to ensure that 0
cannot be assigned to the variable die. Further, since .999 is the largest possible value (since 1.0 is
not), and .999 * 6 will generate 6 (5.9 truncated to 5 with 1 added).

189

Chapter 23 ► Appendix C – Random Number Generation

 23.3 Example

A simple example program to generate 100 random integer numbers, each between 1 and 100, is as
follows:

program rand

implicit none
integer, parameter :: rcount=100
integer :: i
integer, dimension(rcount) :: nums
real :: x

call random_seed()

do i = 1, rcount
call random_number(x)
nums(i) = int(x*100.0) + 1

end do

write (*,'(a)') "Random Numbers:"
do i = 1, rcount

write (*,'(i3,2x)', advance="no") nums(i)
if (mod(i,10)==0) write (*,*)

end do

end program rand

The call to random_seed() must be performed before the call to random_number(). Additionally, the
call to random_seed() can only be performed once.

The output of this example program is shown below:

Random Numbers:
100 57 97 75 37 49 8 1 35 35
 22 14 91 39 45 67 2 66 65 33
 86 41 21 97 60 68 46 34 11 76
 61 72 90 66 16 62 98 100 26 56
 66 56 98 91 66 73 41 93 15 68
 77 34 12 62 83 95 74 50 38 43
 56 100 100 75 96 10 74 76 95 71
 82 56 7 49 60 14 59 52 89 31
 67 67 51 27 8 11 55 38 2 80
 63 78 96 12 32 60 5 12 22 11

Each execution will generate the same series of random numbers.

190

Chapter 23 ◄ Appendix C – Random Number Generation

 23.4 Example

In order to generate different random number for successive executions, the seed must be initialized
with a different set of seed values each time.

The following example simulates the roll of two dice, which requires two random integer numbers,
each between 1 and 6.

program diceRoll

implicit none
integer :: m, die1, die2, pair
real :: x
integer :: i, n, clock
integer, dimension(:), allocatable :: seed
character(10) :: nickname

call random_seed(size = n)
allocate(seed(n))
call system_clock(count=clock)
seed = clock + 37 * (/(i1, i=1, n)/)
call random_seed(put = seed)
deallocate(seed)

call random_number(x)
die1 = int(x*6.0) + 1

call random_number(x)
die2 = int(x*6.0) + 1

write (*,'(2(a,1x,i1/),a,1x,i2)') "Dice 1:", die1, &
"Dice 2:", die2, "Dice Sum", (die1+die2)

end program diceRoll

Will generate different values each execution. For example, three executions of the example program
are shown below:

C:\fortran> dice
Dice 1: 5
Dice 2: 4
Dice Sum 9

C:\fortran> dice
Dice 1: 2
Dice 2: 4
Dice Sum 6

191

Chapter 23 ► Appendix C – Random Number Generation

C:\fortran> dice
Dice 1: 1
Dice 2: 6
Dice Sum 7

C:\fortran>

The dice values will be different for each execution.

192

 24 Appendix D – Intrinsic Functions
The following is a partial listing of the Fortran 95/2003/2008 intrinsic functions. Only the most
common intrinsic functions are included in this section. A complete list can be found on-line at the
GNU Fortran documentation web page.

 24.1 Conversion Functions

The following table provides a list of intrinsic functions that can be used for conversion between
different data types.

Function Description

INT(A) Returns integer value of real argument A, truncating (real
part) towards zero.

NINT(X) Return nearest integer value (with appropriate rounding
up or down) of the real argument X.

REAL(A) Returns the real value of integer argument A.

 24.2 Integer Functions

The following table provides a list of intrinsic functions that can be used for integers.

Function Description

ABS(A) Returns integer absolute value of integer argument A.

MOD(R1,R2) Return the integer remainder of integer argument R1
divided by integer argument R2.

193

Chapter 24 ► Appendix D – Intrinsic Functions

 24.3 Real Functions

The following table provides a list of intrinsic functions that can be used for reals.

Function Description

ABS(A) Returns real absolute value of real argument A.

ACOS(W) Returns real inverse cosine of real argument W in radians.

ASIN(W) Returns real inverse sine of real argument W in radians.

ATAN(X) Returns real inverse tangent of real argument X in radians.

COS(W) Returns real cosine of real argument W in radians.

LOG(W) Returns real natural logarithm of real argument W. Real
argument W must be positive.

MOD(R1,R2) Return the real remainder of real argument R1 divided by
real argument R2.

SIN(W) Returns real sine of real argument W in radians.

SQRT(W) Returns real square root of real argument W. Real
argument W must be positive.

TAN(X) Returns real tangent of real argument X in radians.

 24.4 Character Functions

The following table provides a list of intrinsic functions that can be used for characters/strings.

Function Description

ACHAR(I) Returns the character represented by integer argument I
based on the ASCII table (Appendix A). Integer argument I
must be between 1 and 127.

IACHAR(C) Returns the integer value of the character argument C
represented by ASCII table (Appendix A).

LEN(STR) Returns an integer value representing the length of string
argument STR.

LEN_TRIM(STR) Returns an integer value representing the length of string
argument STR excluding any trailing spaces.

LGE(STR1,STR2) Returns logical true, if STR1 ≥ STR2 and false otherwise.

LGT(STR1,STR2) Returns logical true, if STR1 > STR2 and false otherwise.

LLE(STR1,STR2) Returns logical true, if STR1 ≤ STR2 and false otherwise.

LLT(STR1,STR2) Returns logical true, if STR1 > STR2 and false otherwise.

TRIM(STR) Returns string based on the string argument STR with any
trailing spaces removed.

194

Chapter 24 ◄ Appendix D – Intrinsic Functions

 24.5 Complex Functions

The following table provides a list of intrinsic functions that can be used for complex numbers.

Function Description

AIMAG(Z) Returns the real value of the imaginary part of the complex
argument Z.

CMPLX(X,Y) Returns complex value with real argument X and the real
part and real argument Y as the imaginary part.

REAL(A) Returns the real value of the real part of the complex
argument Z.

 24.6 Array Functions

The following table provides a list of intrinsic functions that can be used for arrays.

Function Description

MAXLOC(A1) Returns integer location or index of the maximum value in
array A1.

MAXVAL(A1) Returns maximum value in array A1. Type of value
returned is based on the type of the argument array A1.

MINLOC(A1) Returns integer location or index of the minimum value in
array A1.

MINVAL(A1) Returns minimum value in array A1. Type of value
returned is based on the type of the argument array A1.

SUM(A1) Returns sum of values in array A1. Type of value returned
is based on the type of the argument array A1.

195

Chapter 24 ► Appendix D – Intrinsic Functions

 24.7 System Information Functions

The following table provides a list of intrinsic functions that obtain information from the system.

Function Description

COMMAND_ARGUMEN
T_COUNT()

Returns the number of command line arguments.

GET_COMMAND_ARG
UMNENT(NUMBER,
VALUE, LENGTH,
STATUS)

Returns command line arguments, if any.
• NUMBER, integer argument of the number to

return. Must be between 1 and
COMMAND_ARGUMENT_COUNT().

• VALUE, character(*), Nth argument
• LENGTH, integer, length of argument returned in

VALUE
• STATUS, integer, status, 0=success and -1=VALUE

character array is too small for argument, other
values=retrieval failed

CPU_TIME(TIME) Returns the amount of CPU time expended on the current
program in seconds. TIME is return as a real value.

DATE_AND_TIME
(DATE,
TIME,ZONE,VALUES)

Return date and time.
• DATE(), character(8), string in the form

YYYYMMDD, where YYYY is year, MM is
month, and DD is date.

• TIME(), character(10), string in the form
HHMMSS.SSS where HH is hour, MM is minute,
SS is second, and SSS is millisecond.

• ZONE(), character(5), string in the form of
±HHMM, where HHMM is the time difference
between local time and Coordination Universal
Time.

• VALUES(), integer array where
◦ VALUES(1) → year
◦ VALUES(2) → month (1-12)
◦ VALUES(3) → date (1-31)
◦ VALUES(4) → month (1-12)
◦ VALUES(5) → hour (0-23)
◦ VALUES(6) → Time zone difference (minutes)
◦ VALUES(7) → seconds (0-59)
◦ VALUES(8) → milleseconds (0-999)

Each argument is optional, but at least one argument must
be included.

196

 25 Appendix E – Visualization with GNUplot
The Fortran language does not have any built-in graphics capabilities. To support some basic data
visualization a plotting application, GNUplot, can be used. GNUplot is a free, open source plotting
program that can plot data files and display user-defined functions.

This appendix provides a very brief summary of some of the basic GNUplot functions as applied to
plotting data from simple programs in this text. An general example program to plot a simple function
is provided for reference.

 25.1 Obtaining GNUplot

The first step is to obtain and install GNUplot.

GNUplot is available at,

http://www.gnuplot.info/

To ensure that GNUplot is installed correctly, for Windows machine, you can enter command prompt
and type,

wgnuplot

which will start GNUplot by opening a new window. To exit, type exit at the prompt.

Complete documentation, tutorials, and examples are available at that site. Additionally, there are
many other web site dedicated to GNUplot.

 25.2 Formatting Plot Files

Since our specific use of GNUplot will involve plotting a data file created with a Fortran program, it
will be necessary to provide some information and directions for GNUplot in the file. That information
is provided in a header (first few lines) and a footer (last few lines). As such, the program must first
write the header, write the data, typically in the form of data points to be plotted, and write a final
footer. The header and footer may be very different based on what is being plotted.

197

Chapter 25 ► Appendix E – Visualization with GNUplot

 25.2.1 Header

The header will provides some guidelines on how the output should look, including title (if any), axises
(if any), lables (if any), and plotting color(s). Additionally, comments can be included with a “#”
character. Comments are useful to provide information about the contents of the plot file or nature of
the data being plotted. A typical header might be as follows:

Example Plot File
set title "CS 117 Plot Function"
plot "" notitle with dots linewidth 2 linecolor 2

Once the header is written, a series of data points can be written.

 25.2.2 Footer

The footer is used to formally tell GNUplot there are no more points. Additionally, the “pause”
directive can be used to ensure that any plots displayed from the command line are left on the screen.
A typical footer might be as follows:

end
pause 1

Nothing after the footer will be read by GNUplot.

 25.3 Plotting Files

In order to display a plot file on a Windows machine, at the command prompt, type,

wgnuplot file.plt

which will start GNUplot and instruct GNUplot to read the file “file.plt”. The file name can be
anything and the file extension is not required to be “.plt”.

If the header or footer commands are incorrect or the data points are invalid, nothing will be displayed.
To investigate, the file can be opened with a text editor.

 25.4 Example

This section provides an example program that plots a simple function.

y = sin(x) ∗ (1−cos (x)
3.0)

The program, data file, and final output are presented for reference.

198

Chapter 25 ◄ Appendix E – Visualization with GNUplot

 25.4.1 Plot Program

The following is an example program that generates points, opens a plot file, write the header, data
points, and footer.

program plotExample

implicit none
real, dimension(200) :: x, y
integer :: i, opnstat

! Generate x and y points
do i = 1, 200

x(i) = i * 0.05
y(i) = sin(x(i)) * (1cos(x(i)/3.0))

end do

! Output data to a file
open (12, file="data.plt", status="replace", &

action="write", position="rewind", &
iostat=opnstat)

if (opnstat > 0) stop "error opening plot file."

! Write header
write (12, '(a)') "# Example Plot File"
write (12, '(a)') "set title ""Example Plot Function"" "
write (12,'(a,a)') "plot """" notitle with dots ",

"linewidth 2 linecolor 2"

! Write points to file.
do i=1,100

write (12,*) x(i), y(i)
end do

! Write footer and close file
write (12, '(a)') "end"
write (12, '(a)') "pause 1"

close(12)

end program plotExample

The data file name can be changed or read from the user.

199

Chapter 25 ► Appendix E – Visualization with GNUplot

 25.4.2 Plot File

The output file this program appears as follows:

Example Plot File
set title "Example Plot Function"
plot "" notitle with dots linewidth 2 linecolor 2
 5.0000001E02 6.9413913E06
 0.1000000 5.5457884E05
 0.1500000 1.8675877E04
 0.2000000 4.4132397E04
 0.2500000 8.5854460E04

[many points not displayed due to space considerations]

 4.900000 1.043852
 4.950000 1.048801
 5.000000 1.050716
end
pause 1

The output file can be edited with a standard text editor. This will allow checking the data file for
possible errors if it does not display correctly.

 25.4.3 Plot Output

The plot output is as follows:

On Windows machines, the plot can be printed by right clicking on the blue bar (on top). This will
display a menu, with “Print” as one of the options.

200

 26 Appendix F – Quiz Question Answers
This appendix provides answers for the quiz questions in each chapter.

 26.1 Quiz Question Answers, Chapter 1

There are no quiz questions in Chapter 1.

 26.2 Quiz Question Answers, Chapter 2

Quiz question answers for chapter 2 are as follows:

1) In the computer, information is represented in binary.

2) Convert the Fortran program into binary or machine language.

3) The BUS connects the memory to the CPU.

4) The answer are as follows:

a) The binary value 00001012 is 5 in decimal.

b) The binary value 00010012 is 9 in decimal.

c) The binary value 00011012 is 13 in decimal.

d) The binary value 00101012 is 21 in decimal.

5) Characters are represented in binary using binary ASCII. Refer to Appendix A for the ASCII
table.

6) Programs are stored on the secondary storage device (SSD, disk drive, or other storage media).

7) Program must be in primary storage or RAM in order to execute.

 26.3 Quiz Question Answers, Chapter 3

Quiz question answers for chapter 3 are as follows:

1) The input file for the compiler is the Fortran program file.

2) The output from the compiler is the executable program.

3) Fortran programs must start with the program <name> statement and end with the end
program <name> statement.

4) Comments are marked with the explanation point (!).

5) The typical file extension for a Fortran 95/2003/2008 program is “.f95”.

6) The typical file extension of the compiler output file is “.exe” for Windows and no extension for
Unix based machines (i.e., MAC and Ubuntu).

201

Chapter 26 ► Appendix F – Quiz Question Answers

 26.4 Quiz Question Answers, Chapter 4

Quiz question answers for chapter 4 are as follows:

1) The five Fortran data types are integer, real, character, logical, and complex.

2) A Fortran variable name must start with a letter. Variable names may include numbers but must
start with a letter.

3) The implied data types are integer, real, integer, real, and real.

4) The statements are:

integer :: value
real :: count

5) The statements are:

real :: rate = 7.5

6) The statements are:

real, parameter :: e = 2.71828183

 26.5 Quiz Question Answers, Chapter 5

Quiz question answers for chapter 5 are as follows:

1) The assignment operator is = (equal sign).

2) The exponentiation operator is ** (double asterisks, no space).

3) An integer variable can be converted to a real with the real conversion function. For example,

realVar = real(intVar)

4) An integer variable can be converted to a real with the real conversion function. For example,

intVar = int(realVar)

Note, in this example precision may be lost since the fractional part is truncated (not rounded).

5) The two logical constants are .true. and .false. which must include the leading and trailing
periods.

6) Some intrinsic functions are real(), int(), nint(), cos(), sin(), mod(), tan(), and sqrt(). There
are more as listed in Appendix D.

7) The statements are as follows:

x1 = (pi / 6.0) * (3.0 * a**2 + 3.0 * b**2 + c**2)
x2 = (2.0 * a / c) * cos(b) * sin(b)
x3 = (b + sqrt(b**2 – 4.0 * a * c)) / (2.0 * a)

202

Chapter 26 ◄ Appendix F – Quiz Question Answers

 26.6 Quiz Question Answers, Chapter 6

Quiz question answers for chapter 6 are as follows:

1) The “(*,*)” means to send it to the screen in 'free format'.

2) The statement is as follows:

write (*,*) "Programming is Fun!"

3) The statements are as follows:

integer :: myage
write (*,*) "Enter Age:"
read (*,*) myage

 26.7 Quiz Question Answers, Chapter 7

Quiz question answers for chapter 7 are as follows:

1) The four program development steps are

1. Understand the Problem

2. Create the Algorithm

3. Implement the Program

4. Test/Debug the Program

2) The three types of errors are compiler error, run-time error, and logic error.

3) Since the formula is incorrect, that would be a logic error.

4) A compiler error is generated when the compiler does not understand the statement. This often
occurs when statements are mis-spelled. For example,

writte(*,*) "Opps"

would generate a compiler error since write is mis-spelled.

 26.8 Quiz Question Answers, Chapter 8

Quiz question answers for chapter 8 are as follows:

1) The six relational operators are >, >=, <, <=, ==, and /=.

2) The three basic logical operators are .and., .or., and .not. where the leading and trailing periods
are required.

3) The answers are .true., .true., .false., .true., .true., .false., and .false. where the leading and
trailing periods are required.

203

Chapter 26 ► Appendix F – Quiz Question Answers

4) The statements are as follows:

if (lives <= 0) then
write (*,*) "Game Over"

end if

Note, this also could be done as follows:

if (lives <= 0) write (*,*) "Game Over"

5) The statements are as follows:

if (num < 0) then
num = abs(num)
write (*,*) "Variable num was made positive"

end if

6) The statements are as follows:

if (y /= 0) then
z = x / y

else
z = 0
write (*,*) "Z not calculated"

end if

Note, another correct solution is as follows:

if (y == 0) then
z = 0
write (*,*) "Z not calculated"

else
z = x / y

end if

7) The statements are as follows:

if (x <= 0.0) then
f = x**2 * y

else
f = x * y

end if

 26.9 Quiz Question Answers, Chapter 9

Quiz question answers for chapter 9 are as follows:

1) When an exit statement is executed, the current loop will be exited, thus not completing any
remaining iterations.

2) There may be an unlimited number of exit statements. Typically, there is only one.

204

Chapter 26 ◄ Appendix F – Quiz Question Answers

3) When a cycle statement is executed, the remaining statements in the loop are skipped and the
next iteration of the loop is started (from the beginning of the loop).

4) There may be an unlimited number of cycle statements. Typically, there is only one.

5) If there are multiple cycle statements, only the first executed cycle statement will be executed.

6) The output is as follows:

The SUM is: 15

7) The output is as follows:

start
1 * 1 = 1
1 * 2 = 2
2 * 1 = 2
2 * 2 = 4
3 * 1 = 3
3 * 2 = 6
end

8) The statements are valid, however since the initial value of i is greater than the stop value, no
statements in the loop will be executed.

9) The statements are valid, however since the initial value of i is greater than the stop value, no
statements in the loop will be executed.

10) There is no specified limit.

11) When nesting IF statements, the nested IF statement must be completely nested within the loop.

 26.10 Quiz Question Answers, Chapter 10

Quiz question answers for chapter 10 are as follows:

1) The format specifiers are rIw, rFw.d, rLw, nX, /, and rA.

2) The output, using an “_” (underscore) for blanks, is as follows:

Hello
Hello World

3) The output, using an “_” (underscore) for blanks, is as follows:

005

4) The statement is as follows:

write (*,'(i3)') num1

5) The statement is as follows:

write (*,'(f7.5)') pi

205

Chapter 26 ► Appendix F – Quiz Question Answers

6) The statement is as follows:

write (*,'(a,/,a)') "Programming", "Is Fun!"

7) The statement is as follows:

write (*,'(a)', advance="no") "Enter Number:"

 26.11 Quiz Question Answers, Chapter 11

Quiz question answers for chapter 11 are as follows:

1) The declaration is as follows:

character (len=12) :: msg = "Hello World!"

2) The results are .false., .true., .false., .false., .true., .false., .true. where the leading and trailing
periods are required.

3) The value for astr1 = “abc”, the value for astr2 = “456”, the value for astr3 = “12345678910”,
and the value for astr4 = “DEF123bc”.

4) The integer value can be obtained by using the IACHAR() function.

5) The character can be obtained from the integer value by using the ACHAR() function.

 26.12 Quiz Question Answers, Chapter 12

Quiz question answers for chapter 12 are as follows:

1) Before a file can be read or written, it must be opened.

2) The recommended range for a file unit number is between 10 and 99 (inclusive).

3) The answers as follows:

a) The name of the file is file.txt.

b) The unit number used is 14.

c) Yes, the error message will be printed if the file does not exist.

d) If the status variable, opnstat, is > 0, an error on the file open has occurred.

4) The read statement is as follows:

read (20,'(13x,i2,8x,i3,8x,i5)') num1, num2, num3

 26.13 Quiz Question Answers, Chapter 13

Quiz question answers for chapter 13 are as follows:

1) An array is considered a direct access structure since any array value can be directly accessed
(without accessing any other locations).

206

Chapter 26 ◄ Appendix F – Quiz Question Answers

2) Yes, an array can hold integer values.

3) Yes, an array can hold real values.

4) The declarations are as follows:

integer, parameter :: SIZE1 = 100
real, dimension(10) :: rvalues
integer, dimension(SIZE1) :: inums
real, dimension(0:9) :: counts

5) The answers as follows:

a) 10.

b) 25.

c) 20.

d) 20.

6) An array can be allocated a compile-time or run-time (but not both).

7) The answers are as follows:

a) The array will contain the following values:

nums

1 1

2 99

3 3

4 99

5 0

b) The statements is called an implied do loop.

c) The statement will display the first 5 values on one line as follows:

__1_99__3_99__0

 26.14 Quiz Question Answers, Chapter 14

Quiz question answers for chapter 14 are as follows:

1) No, a multi-dimensional array can hold either real values or integers values.

2) The answer is a.

3) The answers are as follows:

a) 15.

207

Chapter 26 ► Appendix F – Quiz Question Answers

b) The array contains the following values:

1 2 3

1 2.0 3.0 4.0

2 3.0 4.0 5.0

3 4.0 5.0 6.0

4 5.0 6.0 7.0

5 6.0 7.0 8.0
c) 3.0.

d) 4.0

e) 7.0

4) An unsuccessful allocation can be detected by checking the status variable for a value > 0.

 26.15 Quiz Question Answers, Chapter 15

Quiz question answers for chapter 15 are as follows:

1) The two types of Fortran subprograms are subroutines and functions.

2) A function returns a single value.

3) The variables in the call are referred to as actual arguments.

4) The variables in the function heading are referred to formal arguments.

5) The return type is integer.

6) Yes, it possible to pass integer arguments to a real function.

7) The keyword contains.

8) The answers are as follows:

a) 8.

b) 9.

9) The answers are as follows:

a) fahrToCelsius.

b) Yes.

c) No.

d) 10.0.

10) The term variable scope refers to where a given variable can be accessed.

11) The answers are as follows:

a) in

208

Chapter 26 ◄ Appendix F – Quiz Question Answers

b) out

c) inout

12) The term side-effect is when a function changes one or more of its input arguments. In general,
this is considered poor practice and should be avoided.

 26.16 Quiz Question Answers, Chapter 16

Quiz question answers for chapter 16 are as follows:

1) An item in a derived data type is referred to as a component.

2) Components in a derived data type are accessed with the %.

3) The definition is as follows:

type circle
character(20) :: name
real :: radius
integer :: x, y, x

end type circle

4) The declaration is as follows:

type(circle) :: ring1, ring2

5) The definition is as follows:

type planet
character(15) :: name
real :: radius, volume

end type planet

type(planet) :: earth, mars

6) The definition is as follows:

type date
character(10) :: monthname
integer :: month, day, year

end type date

7) The answers are as follows:

a) The statements are as follows:

type(date) :: today

today%monthname = "December"
today%month = 12

209

Chapter 26 ► Appendix F – Quiz Question Answers

today%date = 25
today%year = 2013

b) The statements are as follows:

type(date) :: newyear

newyear%monthname = "January"
newyear%month = 1
newyear%date = 1
newyear%year = 2011

 26.17 Quiz Question Answers, Chapter 17

Quiz question answers for chapter 17 are as follows:

1) The primary purpose for using a module is to allow the program to be split into multiple source
files.

2) The use <moduleName> statement must be used in the main program.

3) The module <moduleName> statement must be used in the main program.

4) Only one main program is allowed.

5) An unlimited number of modules is allowed.

6) Yes, the contains statement is required in the module.

 26.18 Quiz Question Answers, Chapter 18

Quiz question answers for chapter 18 are as follows:

1) The two requirements for a recursive definition are a base case and rule, or set of rules, that
reduce toward the base case.

2) In recursion, the case for which a solution is obtained directly is called the base case.

3) The keyword recursive is required for a recursive subroutine.

4) The two keywords required for a recursive function are recursive and result.

5) There are no special requirements needed in the calling routine in order to call a recursive
subroutine or recursive function.

6) If a recursive routine does not stop recursing, it will recurse indefinitely, thus hanging the program
and producing no results. The program would need to be manually terminated.

210

Chapter 26 ◄ Appendix F – Quiz Question Answers

7) A complete recursion tree for the recursive Fibonnaci function with an input of 4 is as follows:

 26.19 Quiz Question Answers, Chapter 19

Quiz question answers for chapter 19 are as follows:

1) An internal read is required to convert an character string contain a numeric value.

2) An internal write is required to convert a real value into a character string.

3) The statement to convert the character string sNum=“123” into an integer variable iNum is as
follows:

read (sNum, '()', iostatcvtErr) iNum

211

step 1

step 2

step 3

step 4

step 5

step 6 step 7

step 8

step 9

step 10

step 11

step 7

fib:
 return 1

fib:
 fib(1) +
 fib(0)

fib:
 return 1

fib:
 return 0

fib:
 return 1

fib:
 return 0

fib:
 fib(2) +
 fib(1)

fib:
 fib(1) +
 fib(0)

fib:
 fib(3) +
 fib(2)

main:
 fib(4)

step 12

step 13

step 14

step 15

step 16

Chapter 26 ► Appendix F – Quiz Question Answers

4) The statement to convert the integer variable iNum=234 into a character string sNum is as
follows:

write (sNum, '()', iostat=cvtErr) iNum

 26.20 Quiz Question Answers, Chapter 20

Quiz question answers for chapter 20 are as follows:

1) Yes, the date alone be obtained (i.e., without obtaining the time) using the get_date_time()
system service.

2) The answers are as follows:

a) 2.

b) 5.

c) 1.

3) The hours can obtained from the minutes by dividing by 60 and the minutes obtained by
mod(hours,60).

4) The statement is as follows:

call get_date_time(date=dStr)

5) The statement is as follows:

call get_date_time(time=timeStr, zone=zoneStr)

6) The statement is as follows:

call get_date_time(values=valuesArr)

7) If there are no arguments entered on the command line, the get_command_argument() system
service call will return a 0.

8) The statement is as follows:

call get_command_argument(number=3, value=arg3, &
length=arg3length, status=arg3stat)

212

 27 Appendix G – Fortran 95/2003/2008 Keywords
In programming, a keyword is a word or identifier that has a special Fortran 95/2003/2008 meaning.
Keywords are reserved in that they cannot be used for anything else such variable names.

The Type as listed in the table refers to the following:

● statement → implies a keyword that starts a statement, usually one line unless there is a
continuation "&"

● construct → implies multiple lines, usually ending with "end …"

● attribute → implies it is used in a statement to further clarify or specify additional
information.

For reference, below is a partial list of keywords or reserved words. For a complete list of keywords,
refer to the on-line GNU Fortran 95/2003/2008 documentation.

Keyword Type Meaning

allocatable attribute no space allocated here later allocate

allocate statement allocate memory space now for variable

assignment attribute means subroutine is assignment (=)

backspace statement back up one record

call statement call a subroutine

case statement used in select case structure

character statement intrinsic data type

close statement close a file

complex statement intrinsic data type

contains statement internal subroutines and functions follow

cycle statement continue the next iteration of a do loop
(skipping the subsequent statements)

deallocate statement free up storage used by specified variable

default statement in a select case structure - all others

do construct start a do loop

else construct part of if, else if, else, end if

else if construct part of if, else if, else, end if

elsewhere construct part of where, elsewhere, end where

end do construct ends do loop

213

Chapter 27 ► Appendix G – Fortran 95/2003/2008 Keywords

end function construct ends function

end if construct ends if

end interface construct ends interface

end module construct ends module

end program construct ends program

end select construct ends select case

end subroutine construct ends subroutine

end type construct ends type

end where construct ends where

endfile statement mark the end of a file

exit statement continue execution outside of a do loop

format statement defines a format

function construct starts the definition of a function

if statement and
construct

if(...) statement

implicit statement "none" is preferred to help find errors

in a keyword for
intent

the argument is read only

inout a keyword for
intent

the argument is read/write

integer statement intrinsic data type

intent attribute intent(in) or intent(out) or intent(inout)

interface construct begins an interface definition

intrinsic statement says that following names are intrinsic

inquire statement get the status of a unit

kind attribute sets the kind of the following variables

len attribute sets the length of a character string

logical statement intrinsic data type

module construct beginning of a module definition

namelist statement defines a namelist of input/output

nullify statement nullify a pointer

only attribute restrict what comes from a module

open statement open or create a file

operator attribute indicates function is an operator like +

optional attribute a parameter or argument is optional

214

Chapter 27 ◄ Appendix G – Fortran 95/2003/2008 Keywords

out a keyword for
intent

the argument will be written

print statement performs output to screen

pointer attribute defined the variable as a pointer alias

private statement and
attribute

in a module

program construct start of a main program

public statement and
attribute

in a module - visible outside

read statement performs input

real statement intrinsic data type

recursive attribute allows functions and derived type recursion

result attribute allows naming of function result

return statement returns from exits subroutine or function

rewind statement move read or write position to beginning

select case construct start of a case construct

stop statement terminate execution of the main procedure

subroutine construct start of a subroutine definition

target attribute allows a variable to take a pointer alias

then construct part of if construct

type construct start of user defined type

use statement brings in a module

where construct conditional assignment

while construct a while form of a do loop

write statement performs output

215

Chapter 27 ► Appendix G – Fortran 95/2003/2008 Keywords

216

Index

ABS(A)...193p.
Accessing Array Elements.......................100, 113
Accessing Components...................................136
ACHAR(I)...84, 194
ACOS(W)..194
Actual arguments...122
Addition...23
Advance clause..75
AIMAG(Z)..195
Allocate...99
American Standard Code for Information
Interchange..5
Argument count...177
Argument Intent..122
Argument Passing..123
Arguments...122
Array Declaration......................................98, 111
ASCII..5
ASIN(W)...194
Assignment..23
ATAN(X)...194
Base 10..4
Base 2..5
Binary digit..5
Binary Numbers..5
Bit..5
Boolean..15
Byte...5
Call statement..123
CASE statement..51
Central Processing Unit.......................................3
Chaos Game..96
Character...15
Character constant...22
Character Literals..22
Character Representation....................................5
Character String / Numeric Conversions.........167
CMPLX(X,Y)..195
Command line arguments........................173, 176

Command line options.....................................176
Command_argument_count()..........................177
COMMAND_ARGUMENT_COUNT()........196
Compiler..4
Compiler Error..40
Compiling..9
Complex constant..22
Complex Literals...22
Complex number...15
Component..135
Computer program..2
Conditional Controlled Looping.......................63
Conditional expression......................................43
Conditional Expressions....................................43
Conditionally Controlled Loop Example..........65
Constant...17
Contains...122
Coordinated Universal Time...........................173
COS(W)...194
Counter Controlled Example.............................61
Counter Controlled Looping.............................59
CPU_TIME(TIME)...196
Cycle statement...61
Date...173
DATE_AND_TIME..196
Decimal Numbers..4
Declaration..136
Declarations, Extended Size Variables..............18
Definition..135
Derived Data Types...135
Direct access structure.......................................97
Discriminant..47
Disk drive..3
Division...24
Do-loop..59
Dynamic Array Allocation.........................99, 112
Dynamic Array Declaration...............................99
Dynamic Declaration.......................................112
E-notation..21

217

Chapter ► Index

Equal to...43
Error Terminology...40
Escape character..22, 81
Executable file...9
Exit statement..61
Exponentiation...25
External...121
External declaration...122
External Routines..122
Factorial function..160
File Open...89
Formal arguments..122
FORMAT statement..71
Functions...123
Get_command_argument()..............................177
GET_COMMAND_ARGUMNENT(NUMBER,
VALUE, LENGTH, STATUS)........................196
Get_date_time()...173
GNUplot..197
Greater than...43
Greater than or equal...43
Helper function..161
IACHAR(C)..84, 194
IF statement...45
IF THEN ELSE IF statement............................46
IF THEN ELSE statement.................................45
IMPLICIT NONE..15
Implicit typing...15
Implied do-loop...101
Index..97
INT(A)...193
Integer..14
Integer constants..21
Integer Literals..21
Intent(in)..122
Intent(inout)...122
Intent(out)..122
Interface block...122
Internal...121
Internal read...167
Internal Routines...122
Internal write...167
Intrinsic Functions.....................................26, 124
Iostat..167
Irrational numbers...15
Keyword..14, 213
Kind...19

Kind specifier..19
LEN_TRIM(STR).....................................84, 194
LEN(STR)...84, 194
Less than..43
Less than or equal..43
LGE(STR1,STR2)...194
LGT(STR1,STR2)...194
Literals...21
LLE(STR1,STR2)...194
LLT(STR1,STR2)..194
LOG(W)..194
Logic Error..41
Logical...15
Logical constant..23
Logical Constants..23
Logical Operators..44
Loop..59
Machine language..4
Magic Square...119
MAXLOC(A1)..195
MAXVAL(A1)..195
MINLOC(A1)..195
MINVAL(A1)..195
MOD(R1,R2)..193p.
Module file..151
Modules...149
Monte Carlo...114
Multidimensional Arrays.................................111
Multiplication..24
NINT(X)..193
Not equal to...43
Object file..151
Operands..43
Operating System..2
Order of Operations...25
Parameter...17
Pi estimation..115
Primary Storage...3
Print Binary...158
Program Layout...121
Program Statement..7
Pythagorean theorem.......................................114
Quadratic equation..47
Random Access Memory.....................................3
Random_number()...189
Random_seed()..189
Rational numbers...15

218

Chapter ◄ Index

Read statement..32
Real constants..21
Real Literals..21
Real number2..15
REAL(A)...195
Recursion...157
Recursive Factorial..160
Recursive relation..157
Recursive subroutine.......................................157
Relational Operation..43
Relational Operator...43
Relational Operator (alternate)..........................43
Result variable...160
Run-time Error..40
Scope...122
Secondary source file......................................149
Secondary Storage...3
SELECT CASE Statement................................51
Selector lists..51
Side Effects..124
Side-effect...124
SIN(W)..194
Single Dimension Arrays...................................97
Solid State Drive...3
Source file..8
SQRT(W)...194
Static Array Declaration....................................98
Static Declaration......................................98, 112
Stop Statement...90
String...31
String5...15
Subprogram Types...121
Subprograms..121
Subroutines..125

Subscript..97
Subtraction..24
SUM(A1)...195
System Services...173
TAN(X)...194
Time...173
TRIM(STR)...85, 194
Type Checking...16
Type declaration..16
Unit number...89
Use Statement..150
User-Defined Functions..................................124
Using Functions and Subroutines....................122
Values array...173
Variable Ranges...16
Variable Scope...122
Whole number...14
Write statement..31
Zone...173
.and..44
.eq..43
.ge..43
.gt...43
.le...43
.lt..43
.ne..43
.not...44
.or...44
/=..43
<...43
<=..43
==..43
>...43
>=..43

219

	1 Introduction
	1.1 Why Learn Programming
	1.2 Fortran
	1.3 Complete Fortran 95/2003/2008 Documentation
	1.4 What Is A Program
	1.5 Operating System

	2 Computer Organization
	2.1 Architecture Overview
	2.2 Compiler
	2.3 Information Representation
	2.3.1 Decimal Numbers
	2.3.2 Binary Numbers
	2.3.3 Character Representation

	2.4 Exercises
	2.4.1 Quiz Questions

	3 Getting Started
	3.1 Required Skills
	3.2 Program Formats
	3.2.1 Program Statement
	3.2.2 Comments
	3.2.3 Simple Output
	3.2.4 Example – First Program

	3.3 Text Editor
	3.4 Compiling
	3.4.1 Advanced Compiler Options

	3.5 Executing
	3.6 Exercises
	3.6.1 Quiz Questions
	3.6.2 Suggested Projects

	4 Fortran 95/2003/2008 – Basic Elements
	4.1 Variables
	4.1.1 Variable Names
	4.1.2 Keywords

	4.2 Data Types
	4.2.1 Integer
	4.2.2 Real
	4.2.3 Complex
	4.2.4 Character
	4.2.5 Logical
	4.2.6 Historical Data Typing

	4.3 Declarations
	4.3.1 Declaring Variables
	4.3.2 Variable Ranges
	4.3.3 Type Checking
	4.3.4 Initialization
	4.3.5 Constants

	4.4 Comments
	4.5 Continuation Lines
	4.5.1 Example

	4.6 Declarations, Extended Size Variables
	4.6.1 Integers
	4.6.2 Real

	4.7 Exercises
	4.7.1 Quiz Questions
	4.7.2 Suggested Projects

	5 Expressions
	5.1 Literals
	5.1.1 Integer Literals
	5.1.2 Real Literals
	5.1.2.1 E-Notation

	5.1.3 Complex Literals
	5.1.4 Character Literals
	5.1.5 Logical Constants

	5.2 Arithmetic Operations
	5.2.1 Assignment
	5.2.2 Addition
	5.2.3 Subtraction
	5.2.4 Multiplication
	5.2.5 Division
	5.2.6 Exponentiation

	5.3 Order of Operations
	5.4 Intrinsic Functions
	5.4.1 Mathematical Intrinsic Functions
	5.4.2 Conversion Functions
	5.4.3 Summary

	5.5 Mixed Mode
	5.6 Examples
	5.7 Exercises
	5.7.1 Quiz Questions
	5.7.2 Suggested Projects

	6 Simple Input and Output
	6.1 Output – Write
	6.1.1 Output – Print

	6.2 Input – Read
	6.3 Example
	6.4 Exercises
	6.4.1 Quiz Questions
	6.4.2 Suggested Projects

	7 Program Development
	7.1 Understand the Problem
	7.2 Create the Algorithm
	7.3 Implement the Program
	7.4 Test/Debug the Program
	7.4.1 Error Terminology
	7.4.1.1 Compiler Error
	7.4.1.2 Run-time Error
	7.4.1.3 Logic Error

	7.5 Exercises
	7.5.1 Quiz Questions
	7.5.2 Suggested Projects

	8 Selection Statements
	8.1 Conditional Expressions
	8.2 Logical Operators
	8.3 IF Statements
	8.3.1 IF THEN Statement
	8.3.1.1 IF THEN Statement, Simple Form

	8.3.2 IF THEN ELSE Statement
	8.3.3 IF THEN ELSE IF Statement

	8.4 Example One
	8.4.1 Understand the Problem
	8.4.2 Create the Algorithm
	8.4.3 Implement the Program
	8.4.4 Test/Debug the Program

	8.5 SELECT CASE Statement
	8.6 Example Two
	8.6.1 Understand the Problem
	8.6.2 Create the Algorithm
	8.6.3 Implement the Program
	8.6.4 Test/Debug the Program

	8.7 Exercises
	8.7.1 Quiz Questions
	8.7.2 Suggested Projects

	9 Looping
	9.1 Counter Controlled Looping
	9.2 EXIT and CYCLE Statements
	9.3 Counter Controlled Example
	9.3.1 Understand the Problem
	9.3.2 Create the Algorithm
	9.3.3 Implement the Program
	9.3.4 Test/Debug the Program

	9.4 Conditional Controlled Looping
	9.5 Conditionally Controlled Loop Example
	9.5.1 Understand the Problem
	9.5.2 Create the Algorithm
	9.5.3 Implement the Program
	9.5.4 Test/Debug the Program

	9.6 Exercises
	9.6.1 Quiz Questions
	9.6.2 Suggested Projects

	10 Formatted Input/Output
	10.1 Format
	10.2 Format Specifiers
	10.3 Integer Format Specifier
	10.4 Real Format Specifier
	10.5 Logical Format Specifier
	10.6 Character Format Specifier
	10.7 Advance Clause
	10.8 Example
	10.8.1 Understand the Problem
	10.8.2 Create the Algorithm
	10.8.3 Implement the Program
	10.8.4 Test/Debug the Program

	10.9 Exercises
	10.9.1 Quiz Questions
	10.9.2 Suggested Projects

	11 Characters and Strings
	11.1 Character and String Constants
	11.2 Character Variable Declaration
	11.3 Character Variable Initialization
	11.4 Character Constants
	11.5 Character Assignment
	11.6 Character Operators
	11.7 Character Substrings
	11.8 Character Comparisons
	11.9 Intrinsic Character Operations
	11.10 Example
	11.10.1 Understand the Problem
	11.10.2 Create the Algorithm
	11.10.3 Implement the Program
	11.10.4 Test/Debug the Program

	11.11 Exercises
	11.11.1 Quiz Questions
	11.11.2 Suggested Projects

	12 File Operations
	12.1 File Open
	12.2 File Write
	12.3 Stop Statement
	12.4 File Read
	12.5 Rewind
	12.6 Backspace
	12.7 Close File
	12.8 Example
	12.8.1 Understand the Problem
	12.8.2 Create the Algorithm
	12.8.3 Implement the Program
	12.8.4 Test/Debug the Program

	12.9 Exercises
	12.9.1 Quiz Questions
	12.9.2 Suggested Projects

	13 Single Dimension Arrays
	13.1 Array Declaration
	13.1.1 Static Declaration
	13.1.2 Static Array Declaration
	13.1.3 Dynamic Array Declaration
	13.1.3.1 Dynamic Array Allocation

	13.2 Accessing Array Elements
	13.2.1 Array Bounds

	13.3 Implied Do-Loop
	13.4 Initializing Arrays
	13.5 Example
	13.5.1 Understand the Problem
	13.5.2 Create the Algorithm
	13.5.3 Implement the Program
	13.5.4 Test/Debug the Program

	13.6 Arrays of Strings
	13.7 Exercises
	13.7.1 Quiz Questions
	13.7.2 Suggested Projects

	14 Multidimensional Arrays
	14.1 Array Declaration
	14.1.1 Static Declaration
	14.1.2 Dynamic Declaration
	14.1.3 Dynamic Array Allocation

	14.2 Accessing Array Elements
	14.3 Example
	14.3.1 Understand the Problem
	14.3.2 Create the Algorithm
	14.3.3 Implement the Program
	14.3.4 Test/Debug the Program

	14.4 Exercises
	14.4.1 Quiz Questions
	14.4.2 Suggested Projects

	15 Subprograms
	15.1 Subprogram Types
	15.2 Program Layout
	15.2.1 Internal Routines
	15.2.2 External Routines

	15.3 Arguments
	15.3.1 Argument Intent

	15.4 Variable Scope
	15.5 Using Functions and Subroutines
	15.5.1 Argument Passing

	15.6 Functions
	15.6.1 Intrinsic Functions
	15.6.2 User-Defined Functions
	15.6.2.1 Side Effects

	15.7 Subroutines
	15.8 Example
	15.8.1 Understand the Problem
	15.8.2 Create the Algorithm
	15.8.3 Implement the Program
	15.8.4 Test/Debug the Program

	15.9 Exercises
	15.9.1 Quiz Questions
	15.9.2 Suggested Projects

	16 Derived Data Types
	16.1 Definition
	16.2 Declaration
	16.3 Accessing Components
	16.4 Example One
	16.4.1 Understand the Problem
	16.4.2 Create the Algorithm
	16.4.3 Implement the Program
	16.4.4 Test/Debug the Program

	16.5 Arrays of Derived Data
	16.6 Example Two
	16.6.1 Understand the Problem
	16.6.2 Create the Algorithm
	16.6.3 Implement the Program
	16.6.4 Test/Debug the Program

	16.7 Exercises
	16.7.1 Quiz Questions
	16.7.2 Suggested Projects

	17 Modules
	17.1 Module Declaration
	17.2 Use Statement
	17.3 Updated Compilation Commands
	17.4 Module Example Program
	17.4.1 Understand the Problem
	17.4.2 Create the Algorithm
	17.4.3 Implement the Program
	17.4.3.1 Main Program
	17.4.3.2 Module Routines

	17.4.4 Compile the Program
	17.4.5 Test/Debug the Program

	17.5 Exercises
	17.5.1 Quiz Questions
	17.5.2 Suggested Projects

	18 Recursion
	18.1 Recursive Subroutines
	18.2 Recursive Print Binary Example
	18.2.1 Understand the Problem
	18.2.2 Create the Algorithm
	18.2.3 Implement the Program
	18.2.4 Test/Debug the Program

	18.3 Recursive Functions
	18.4 Recursive Factorial Example
	18.4.1 Understand the Problem
	18.4.2 Create the Algorithm
	18.4.3 Implement the Program
	18.4.4 Test/Debug the Program

	18.5 Recursive Factorial Function Call Tree
	18.6 Exercises
	18.6.1 Quiz Questions
	18.6.2 Suggested Projects

	19 Character String / Numeric Conversions
	19.1 Character String to Numeric Conversion
	19.2 Numeric to Character String Conversion
	19.3 Exercises
	19.3.1 Quiz Questions
	19.3.2 Suggested Projects

	20 System Services
	20.1 Date and Time
	20.1.1 Date and Time Options
	20.1.2 Date and Time Example Program

	20.2 Command Line Arguments
	20.2.1 Argument Count
	20.2.2 Get Arguments
	20.2.3 Command Line Arguments, Example Program

	20.3 Exercises
	20.3.1 Quiz Questions
	20.3.2 Suggested Projects

	21 Appendix A – ASCII Table
	22 Appendix B – Windows Start-Up Instructions
	22.1 Working Files
	22.2 Obtaining The Compiler
	22.3 Command Prompt
	22.3.1 Windows XP/Vista/7
	22.3.2 Windows 8/10
	22.3.3 Command Prompt Window
	22.3.4 Device and Directory

	22.4 Compiler Installation Verification
	22.5 Compilation
	22.6 Executing
	22.7 Example

	23 Appendix C – Random Number Generation
	23.1 Initialization
	23.2 Generating Random Number
	23.3 Example
	23.4 Example

	24 Appendix D – Intrinsic Functions
	24.1 Conversion Functions
	24.2 Integer Functions
	24.3 Real Functions
	24.4 Character Functions
	24.5 Complex Functions
	24.6 Array Functions
	24.7 System Information Functions

	25 Appendix E – Visualization with GNUplot
	25.1 Obtaining GNUplot
	25.2 Formatting Plot Files
	25.2.1 Header
	25.2.2 Footer

	25.3 Plotting Files
	25.4 Example
	25.4.1 Plot Program
	25.4.2 Plot File
	25.4.3 Plot Output

	26 Appendix F – Quiz Question Answers
	26.1 Quiz Question Answers, Chapter 1
	26.2 Quiz Question Answers, Chapter 2
	26.3 Quiz Question Answers, Chapter 3
	26.4 Quiz Question Answers, Chapter 4
	26.5 Quiz Question Answers, Chapter 5
	26.6 Quiz Question Answers, Chapter 6
	26.7 Quiz Question Answers, Chapter 7
	26.8 Quiz Question Answers, Chapter 8
	26.9 Quiz Question Answers, Chapter 9
	26.10 Quiz Question Answers, Chapter 10
	26.11 Quiz Question Answers, Chapter 11
	26.12 Quiz Question Answers, Chapter 12
	26.13 Quiz Question Answers, Chapter 13
	26.14 Quiz Question Answers, Chapter 14
	26.15 Quiz Question Answers, Chapter 15
	26.16 Quiz Question Answers, Chapter 16
	26.17 Quiz Question Answers, Chapter 17
	26.18 Quiz Question Answers, Chapter 18
	26.19 Quiz Question Answers, Chapter 19
	26.20 Quiz Question Answers, Chapter 20

	27 Appendix G – Fortran 95/2003/2008 Keywords
	Index

